Nonlinear Dynamics

, Volume 69, Issue 1–2, pp 159–172

# Primary resonance in forced vibrations of in-plane translating viscoelastic plates with 3:1 internal resonance

Original Paper

## Abstract

Nonlinear forced vibrations of in-plane translating viscoelastic plates subjected to plane stresses are analytically and numerically investigated on the steady-state responses in external and internal resonances. A nonlinear partial-differential equation with the associated boundary conditions governing the transverse motion is derived from the generalized Hamilton principle and the Kelvin relation. The method of multiple scales is directly applied to establish the solvability conditions in the primary resonance and the 3:1 internal resonance. The steady-state responses are predicted in two patterns: single-mode and two-mode solutions. The Routh–Hurvitz criterion is used to determine the stabilities of the steady-state responses. The effects of the in-plane translating speed, the viscosity coefficient, and the excitation amplitude on the steady-state responses are examined. The differential quadrature scheme is developed to solve the nonlinear governing equations numerically. The numerical calculations confirm the approximate analytical results regarding the single-mode solutions of the steady-state responses.

## Keywords

In-plane translating plates Nonlinearity Viscoelasticity Primary resonance Internal resonance Steady-state response Method of multiple scales Differential quadrature scheme

## References

1. 1.
Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. Appl. Mech. Rev. 58, 91–116 (2005)
2. 2.
Chen, L.Q.: Nonlinear vibrations of axially moving beams. Nonlinear Dyn. 145–172 (2010) (ed. by Todd Evans, Intech) Google Scholar
3. 3.
Ulsoy, A.G., Mote, C.D. Jr.: Vibration of wide band saw blades. ASME J. Eng. Ind. Trans. 104, 71–78 (1982)
4. 4.
Lengoc, L., Mccallion, H.: Wide bandsaw blade under cutting conditions, Part I: Vibration of a plate moving in its plane while subjected to tangential edge loading. J. Sound Vib. 186, 125–142 (1995)
5. 5.
Lengoc, L., Mccallion, H.: Wide bandsaw blade under cutting conditions, Part II: Stability of a plate moving in its plane while subjected to parametric excitation. J. Sound Vib. 186, 143–162 (1995)
6. 6.
Lengoc, L., Mccallion, H.: Wide bandsaw blade under cutting conditions: Part III: Stability of a plate moving in its plane while subjected to non-conservative cutting forces. J. Sound Vib. 186, 163–179 (1995)
7. 7.
Lin, C.C., Mote, C.D. Jr.: Equilibrium displacement and stress distribution in a two-dimensional, axially moving web under transverse loading. J. Appl. Mech. 62, 772–779 (1995)
8. 8.
Lee, H.P., Ng, T.Y.: Dynamic stability of a moving rectangular plate subject to in-plane acceleration and force perturbations. Appl. Acoust. 45, 47–59 (1995)
9. 9.
Lin, C.C.: Stability and vibration characteristics of axially moving plates. Int. J. Solids Struct. 34, 3179–3190 (1997)
10. 10.
Lin, C.C.: Finite width effects on the critical speed of axially moving materials. J. Vib. Acoust. 120, 633–634 (1998)
11. 11.
Luo, Z., Hutton, S.G.: Formulation of a three-node traveling triangular plate element subjected to gyroscopic and in-plane forces. Comput. Struct. 80, 1935–1944 (2002)
12. 12.
Kim, J., Cho, J., Lee, U., Park, S.: Modal spectral element formulation for axially moving plates subjected to in-plane axial tension. Comput. Struct. 81, 2011–2020 (2003)
13. 13.
Hatami, S., Azhari, M., Saadatpour, M.M.: Exact and semi-analytical finite strip for vibration and dynamic stability of traveling plates with intermediate supports. Adv. Struct. Eng. 9, 639–651 (2006)
14. 14.
Hatami, S., Azhari, M., Saadatpour, M.M.: Stability and vibration of elastically supported, axially moving orthotropic plates. Iran. J. Sci. Technol. B 30, 427–446 (2006) Google Scholar
15. 15.
Hatami, S., Azhari, M., Saadatpour, M.M.: Nonlinear analysis of axially moving plates using FEM. Int. J. Struct. Stab. Dyn. 7, 589–607 (2007)
16. 16.
Hatami, S., Azhari, M., Saadatpour, M.M.: Free vibration of moving laminated composite plates. Compos. Struct. 80, 609–620 (2007)
17. 17.
Kartik, V., Wickert, J.A.: Parametric instability of a traveling plate partially supported by a laterally moving elastic foundation. J. Vib. Acoust. 130, 051006 (2008)
18. 18.
Banichuk, N., Jeronen, J., Neittaanämki, P., Tunvinen, T.: On the instability of an axially moving elastic plate. Int. J. Solids Struct. 47, 91–99 (2009)
19. 19.
Yang, X.D., Chen, L.Q., Zu, J.W.: Vibrations and stability of an axially moving rectangular composite plate. J. Appl. Mech. 78, 011018 (2011)
20. 20.
Guo, X.X., Wang, Z.M., Wang, Y.: Dynamic stability of thermoelastic coupling moving plate subjected to follower force. Appl. Acoust. 72, 100–107 (2011)
21. 21.
Hatami, S., Ronagh, H.R., Azhari, M.: Exact free vibration analysis of axially moving viscoelastic plates. Comput. Struct. 86, 1736–1746 (2008)
22. 22.
Zhou, Y.F., Wang, Z.M.: Vibration of axially moving viscoelastic plate with parabolically varying thickness. J. Sound Vib. 316, 198–210 (2008)
23. 23.
Marynowski, K.: Free vibration analysis of the axially moving Levy-type viscoelastic plate. Eur. J. Mech. A, Solids 29, 879–886 (2010)
24. 24.
Luo, A.C.J., Hamidzadeh, H.R.: Equilibrium and buckling stability for axially traveling plates. Commun. Nonlinear Sci. Numer. Simul. 9, 343–360 (2004)
25. 25.
Luo, A.C.J.: Chaotic motions in resonant separatrix zones of periodically forced, axially travelling, thin plates. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 219, 237–247 (2005) Google Scholar
26. 26.
Nayfeh, A.H., Raouf, R.A.: Nonlinear forced response of infinitely long circular cylindrical shells. J. Appl. Mech. 54, 571 (1987)
27. 27.
Pai, P.F., Nayfeh, A.H.: Non-linear non-planar oscillations of a cantilever beam under lateral base excitations. Int. J. Non-Linear Mech. 25, 455–474 (1990)
28. 28.
Chen, S.H., Huang, J.L., Sze, K.Y.: Multidimensional Lindstedt–Poincaré method for nonlinear vibration of axially moving beams. J. Sound Vib. 306, 1–11 (2007)
29. 29.
Suweken, G., Horssen, W.T.: On the transversal vibrations of a conveyor belt with a low and time-varying velocity. Part II: The beam-like case. J. Sound Vib. 267, 1007–1027 (2003)
30. 30.
Pakdemirli, M., Özkaya, E.: Three-to-one internal resonances in a general cubic non-linear continous system. J. Sound Vib. 268, 543–553 (2003)
31. 31.
Özhan, B., Pakdemirli, M.: A general solution procedure for the forced vibrations of a continuous system with cubic nonlinearities: primary resonances case. J. Sound Vib. 325, 894–906 (2009)
32. 32.
Sze, K.Y., Chen, S.H., Huang, J.L.: The incremental harmonic balance method for nonlinear vibration of axially moving beams. J. Sound Vib. 281, 611–626 (2005)
33. 33.
Huang, J.L., Chen, S.H.: Combination resonance of laterally nonlinear vibration of axially moving systems. J. Vib. Eng. 18, 19–23 (2005) Google Scholar
34. 34.
Tang, Y.Q., Chen, L.Q.: Nonlinear free transverse vibrations of in-plane moving plates: without and with internal resonances. J. Sound Vib. 330, 110–126 (2011)
35. 35.
Nayfeh, A.H., Mook, D.T., Sridhar, S.: Nonlinear analysis of the forced response of structural elements. J. Acoust. Soc. Am. 55, 281–291 (1973)
36. 36.
Chen, J.C., Babcock, C.D.: Nonlinear vibration of cylindrical shells. AIAA J. 13, 868–876 (1975)
37. 37.
Chen, L.Q., Zu, J.W.: Solvability condition in multi-scale analysis of gyroscopic continua. J. Sound Vib. 309, 338–342 (2008)