Skip to main content
Log in

Intermittent neural synchronization in Parkinson’s disease

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Motor symptoms of Parkinson’s disease are related to the excessive synchronized oscillatory activity in the beta frequency band (around 20 Hz) in the basal ganglia and other parts of the brain. This review explores the dynamics and potential mechanisms of these oscillations employing ideas and methods from nonlinear dynamics. We present extensive experimental documentation of the relevance of synchronized oscillations to motor behavior in Parkinson’s disease, and we discuss the intermittent character of this synchronization. The reader is introduced to novel time-series analysis techniques aimed at the detection of the fine temporal structure of intermittent phase locking observed in the brains of Parkinsonian patients. Modeling studies of brain networks are reviewed, which may describe the observed intermittent synchrony, and we discuss what these studies reveal about brain dynamics in Parkinson’s disease. The Parkinsonian brain appears to exist on the boundary between phase-locked and nonsynchronous dynamics. Such a situation may be beneficial in the healthy state, as it may allow for easy formation and dissociation of transient patterns of synchronous activity which are required for normal motor behavior. Dopaminergic degeneration in Parkinson’s disease may shift the brain networks closer to this boundary, which would still permit some motor behavior while accounting for the associated motor deficits. Understanding the mechanisms of the intermittent synchrony in Parkinson’s disease is also important for biomedical engineering since efficient control strategies for suppression of pathological synchrony through deep brain stimulation require knowledge of the dynamics of the processes subjected to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel, H.D.I., et al.: Synchronization in neural networks. Phys. Usp. 39, 337–362 (1996)

    Article  Google Scholar 

  2. Rabinovich, M.I., et al.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78(4), 1213–1265 (2006)

    Article  MathSciNet  Google Scholar 

  3. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007)

    Google Scholar 

  4. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, New York (2010)

    Book  MATH  Google Scholar 

  5. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  6. Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev., Neurosci. 2(10), 704–716 (2001)

    Article  Google Scholar 

  7. Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)

    Article  Google Scholar 

  8. Uhlhaas, P.J., et al.: Neural synchrony and the development of cortical networks. Trends Cogn. Sci. 14(2), 72–80 (2010)

    Article  Google Scholar 

  9. Fell, J., Axmacher, N.: The role of phase synchronization in memory processes. Nat. Rev., Neurosci. 12(2), 105–118 (2011)

    Article  Google Scholar 

  10. Sanes, J.N., Donoghue, J.P.: Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl. Acad. Sci. USA 90(10), 4470–4474 (1993)

    Article  Google Scholar 

  11. Murthy, V.N., Fetz, E.E.: Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. J. Neurophysiol. 76(6), 3949–3967 (1996)

    Google Scholar 

  12. Baker, S.N., et al.: The role of synchrony and oscillations in the motor output. Exp. Brain Res. 128(1–2), 109–117 (1999)

    Article  Google Scholar 

  13. Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev., Neurosci. 6(4), 285–296 (2005)

    Article  Google Scholar 

  14. Uhlhaas, P.J., Singer, W.: Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52(1), 155–168 (2006)

    Article  Google Scholar 

  15. Uhlhaas, P.J., Singer, W.: Abnormal neural oscillations and synchrony in schizophrenia. Nat. Rev., Neurosci. 11(2), 100–113 (2010)

    Article  Google Scholar 

  16. Le Van Quyen, M., Bragin, A.: Analysis of dynamic brain oscillations: methodological advances. Trends Neurosci. 30(7), 365–373 (2007)

    Article  Google Scholar 

  17. Rivlin-Etzion, M., et al.: Basal ganglia oscillations and pathophysiology of movement disorders. Curr. Opin. Neurobiol. 16(6), 629–637 (2006)

    Article  Google Scholar 

  18. Hutchison, W.D., et al.: Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J. Neurosci. 24(42), 9240–9243 (2004)

    Article  Google Scholar 

  19. Boraud, T., et al.: Oscillations in the basal ganglia: The good, the bad, and the unexpected. In: Bolam, J.P., Ingham, C.A., Magill, P.J. (eds.) The Basal Ganglia VIII. Springer, New York (2005)

    Google Scholar 

  20. Gatev, P., Darbin, O., Wichmann, T.: Oscillations in the basal ganglia under normal conditions and in movement disorders. Mov. Disord. 21(10), 1566–1577 (2006)

    Article  Google Scholar 

  21. Hammond, C., Bergman, H., Brown, P.: Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30(7), 357–364 (2007)

    Article  Google Scholar 

  22. Bergman, H., et al.: Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends Neurosci. 21(1), 32–38 (1998)

    Article  Google Scholar 

  23. Goldberg, J.A., et al.: Enhanced synchrony among primary motor cortex neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of Parkinson’s disease. J. Neurosci. 22(11), 4639–4653 (2002)

    Google Scholar 

  24. Soares, J., et al.: Role of external pallidal segment in primate Parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism and lesions of the external pallidal segment. J. Neurosci. 24(29), 6417–6426 (2004)

    Article  Google Scholar 

  25. Costa, R.M., et al.: Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52(2), 359–369 (2006)

    Article  Google Scholar 

  26. Sharott, A., et al.: Directional analysis of coherent oscillatory field potentials in the cerebral cortex and basal ganglia of the rat. J. Physiol. 562(Pt 3), 951–963 (2005)

    Google Scholar 

  27. Magill, P.J., et al.: Brain state-dependency of coherent oscillatory activity in the cerebral cortex and basal ganglia of the rat. J. Neurophysiol. 92(4), 2122–2136 (2004)

    Article  Google Scholar 

  28. Magill, P.J., et al.: Changes in functional connectivity within the rat striatopallidal axis during global brain activation in vivo. J. Neurosci. 26(23), 6318–6329 (2006)

    Article  Google Scholar 

  29. Goldberg, J.A., et al.: Spike synchronization in the cortex/basal-ganglia networks of Parkinsonian primates reflects global dynamics of the local field potentials. J. Neurosci. 24(26), 6003–6010 (2004)

    Article  Google Scholar 

  30. Fogelson, N., et al.: Different functional loops between cerebral cortex and the subthalamic area in Parkinson’s disease. Cereb. Cortex 16(1), 64–75 (2006)

    Article  Google Scholar 

  31. Lalo, E., et al.: Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J. Neurosci. 28(12), 3008–3016 (2008)

    Article  Google Scholar 

  32. Plenz, D., Kital, S.T.: A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400(6745), 677–682 (1999)

    Article  Google Scholar 

  33. Bevan, M.D., et al.: Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci. 25(10), 525–531 (2002)

    Article  Google Scholar 

  34. Surmeier, D.J., Mercer, J.N., Chan, C.S.: Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr. Opin. Neurobiol. 15(3), 312–318 (2005)

    Article  Google Scholar 

  35. Bevan, M.D., Atherton, J.F., Baufreton, J.: Cellular principles underlying normal and pathological activity in the subthalamic nucleus. Curr. Opin. Neurobiol. 16(6), 621–628 (2006)

    Article  Google Scholar 

  36. Cassidy, M., et al.: Movement-related changes in synchronization in the human basal ganglia. Brain 125(Pt 6), 1235–1246 (2002)

    Article  Google Scholar 

  37. Levy, R., et al.: Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain 125(Pt 6), 1196–1209 (2002)

    Article  Google Scholar 

  38. Kuhn, A.A., et al.: Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127(Pt 4), 735–746 (2004)

    Article  Google Scholar 

  39. Amirnovin, R., et al.: Visually guided movements suppress subthalamic oscillations in Parkinson’s disease patients. J. Neurosci. 24(50), 11302–11306 (2004)

    Article  Google Scholar 

  40. Brown, P., et al.: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21(3), 1033–1108 (2001)

    Google Scholar 

  41. Priori, A., et al.: Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp. Neurol. 189(2), 369–379 (2004)

    Article  Google Scholar 

  42. Williams, D., et al.: Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125(Pt 7), 1558–1569 (2002)

    Article  Google Scholar 

  43. Levy, R., et al.: Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson’s disease. J. Neurophysiol. 86(1), 249–260 (2001)

    Google Scholar 

  44. Sharott, A., et al.: Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur. J. Neurosci. 21(5), 1413–1422 (2005)

    Article  Google Scholar 

  45. Silberstein, P., et al.: Cortico-cortical coupling in Parkinson’s disease and its modulation by therapy. Brain 128(Pt 6), 1277–1291 (2005)

    Article  Google Scholar 

  46. Kuhn, A.A., et al.: Frequency-specific effects of stimulation of the subthalamic area in treated Parkinson’s disease patients. NeuroReport 20(11), 975–978 (2009)

    Article  Google Scholar 

  47. Weinberger, M., et al.: Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J. Neurophysiol. 96(6), 3248–3256 (2006)

    Article  Google Scholar 

  48. Marceglia, S., et al.: Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson’s disease. J. Physiol. 571(Pt 3), 579–591 (2006)

    Article  Google Scholar 

  49. Dejean, C., et al.: Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J. Neurophysiol. 100(1), 385–396 (2008)

    Article  Google Scholar 

  50. Wingeier, B., et al.: Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp. Neurol. 197(1), 244–251 (2006)

    Article  Google Scholar 

  51. Kuhn, A.A., et al.: High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J. Neurosci. 28(24), 6165–6173 (2008)

    Article  Google Scholar 

  52. Eusebio, A., et al.: Deep brain stimulation can suppress pathological synchronisation in Parkinsonian patients. J. Neurol., Neurosurg. Psychiatry 82(5), 569–573 (2011)

    Article  Google Scholar 

  53. Brown, P., Williams, D.: Basal ganglia local field potential activity: character and functional significance in the human. Clin. Neurophysiol. 116(11), 2510–2519 (2005)

    Article  Google Scholar 

  54. Brown, P.: Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr. Opin. Neurobiol. 17(6), 656–664 (2007)

    Article  Google Scholar 

  55. Engel, A.K., Fries, P.: Beta-band oscillations—signalling the status quo? Curr. Opin. Neurobiol. 20(2), 156–165 (2010)

    Article  Google Scholar 

  56. Leblois, A., et al.: Late emergence of synchronized oscillatory activity in the pallidum during progressive Parkinsonism. Eur. J. Neurosci. 26(6), 1701–1713 (2007)

    Article  Google Scholar 

  57. Mallet, N., et al.: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J. Neurosci. 28(18), 4795–4806 (2008)

    Article  Google Scholar 

  58. Chen, C.C., et al.: Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Exp. Neurol. 205(1), 2142–2151 (2007)

    Article  Google Scholar 

  59. Pogosyan, A., et al.: Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr. Biol. 19(19), 1637–1641 (2009)

    Article  Google Scholar 

  60. Montgomery, E.B.: Basal ganglia physiology and pathophysiology: a reappraisal. Parkinsonism Relat. Disord. 13(8), 455–465 (2007)

    Article  Google Scholar 

  61. Gale, J.T., et al.: From symphony to cacophony: pathophysiology of the human basal ganglia in Parkinson disease. Neurosci. Biobehav. Rev. 32(3), 378–387 (2008)

    Article  MathSciNet  Google Scholar 

  62. Gradinaru, V., et al.: Optical deconstruction of Parkinsonian neural circuitry. Science 324(5925), 354–359 (2009)

    Article  Google Scholar 

  63. Hutchison, W.D., Dostrovsky, J.O., Lozano, A.M.: Movement disorders surgery: microelectrode recording from deep brain nuclei. In: Hallett, I.M. (ed.) Movement Disorder, Handbook of Clinical Neuorphysiology. Elsevier, Amsterdam (2003)

    Google Scholar 

  64. Israel, Z., Burchiel, K.: Microelectrode Recording in Movement Disorder Surgery. Thieme, Stuttgart (2004)

    Google Scholar 

  65. Park, C., Worth, R.M., Rubchinsky, L.L.: Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. J. Neurophysiol. 103(5), 2707–2716 (2010)

    Article  Google Scholar 

  66. Hurtado, J.M., Rubchinsky, L.L., Sigvardt, K.A.: Statistical method for detection of phase-locking episodes in neural oscillations. J. Neurophysiol. 91(4), 1883–1898 (2004)

    Article  Google Scholar 

  67. Hurtado, J.M., et al.: Temporal evolution of oscillations and synchrony in GPi/muscle pairs in Parkinson’s disease. J. Neurophysiol. 93(3), 1569–1584 (2005)

    Article  Google Scholar 

  68. Le Van Quyen, M., et al.: Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111(2), 83–98 (2001)

    Article  Google Scholar 

  69. Ahn, S., Park, C., Rubchinsky, L.L.: Detecting the temporal structure of intermittent phase locking. Phys. Rev. E 84(1), 016201 (2011)

    Article  Google Scholar 

  70. Terman, D., et al.: Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22(7), 2963–2976 (2002)

    Google Scholar 

  71. Mallet, N., et al.: Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J. Neurosci. 28(52), 14245–14258 (2008)

    Article  Google Scholar 

  72. Wilson, C.J.: Basal Ganglia. In: Shepherd, G.M. (ed.) The Synaptic Organization of the Brain. Oxford University Press, New York (2004)

    Google Scholar 

  73. Smith, Y., et al.: Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2), 353–387 (1998)

    Article  Google Scholar 

  74. Bolam, J.P., et al.: Synaptic organisation of the basal ganglia. J. Anat. 196(Pt 4), 527–542 (2000)

    Article  Google Scholar 

  75. Buzsaki, G., Traub, R.D., Pedley, T.A.: The cellular basis of EEG activity. In: Ebersole, J.S., Pedley, T.A. (eds.) Current Practice of Clinical Electroencephalography, pp. 1–11. Lippincott Williams & Wilkins, Philadelphia (2003)

    Google Scholar 

  76. Mitzdorf, U.: Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65(1), 37–100 (1985)

    Google Scholar 

  77. Wilson, C.L., Puntis, M., Lacey, M.G.: Overwhelmingly asynchronous firing of rat subthalamic nucleus neurones in brain slices provides little evidence for intrinsic interconnectivity. Neuroscience 123(1), 187–200 (2004)

    Article  Google Scholar 

  78. Stanford, I.M., Cooper, A.J.: Presynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. J. Neurosci. 19(12), 4796–4803 (1999)

    Google Scholar 

  79. Ogura, M., Kita, H.: Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat. J. Neurophysiol. 83(6), 3366–33676 (2000)

    Google Scholar 

  80. Cooper, A.J., Stanford, I.M.: Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology 41(1), 62–71 (2001)

    Article  Google Scholar 

  81. Shen, K.Z., Johnson, S.W.: Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J. Physiol. 525(Pt 2), 331–341 (2000)

    Article  Google Scholar 

  82. Floran, B., et al.: Dopamine D4 receptors inhibit depolarization-induced [3H]GABA release in the rat subthalamic nucleus. Eur. J. Pharmacol. 498(1–3), 97–102 (2004)

    Article  Google Scholar 

  83. Shen, K.Z., et al.: Dopamine receptor supersensitivity in rat subthalamus after 6-hydroxydopamine lesions. Eur. J. Neurosci. 18(11), 2967–2974 (2003)

    Article  Google Scholar 

  84. Cragg, S.J., et al.: Synaptic release of dopamine in the subthalamic nucleus. Eur. J. Neurosci. 20(7), 1788–1802 (2004)

    Article  Google Scholar 

  85. Shen, K.Z., Johnson, S.W.: Dopamine depletion alters responses to glutamate and GABA in the rat subthalamic nucleus. NeuroReport 16(2), 171–174 (2005)

    Article  Google Scholar 

  86. Baufreton, J., Bevan, M.D.: D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus. J. Physiol. 586(8), 2121–2142 (2008)

    Article  Google Scholar 

  87. Park, C., Worth, R., Rubchinsky, L.L.: Neural dynamics in Parkinsonian brain: the boundary between synchronized and nonsynchronized dynamics. Phys. Rev. E 83(4), 042901 (2011)

    Article  Google Scholar 

  88. Hernandez, A., et al.: Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. J. Neurophysiol. 96(6), 2877–2888 (2006)

    Article  Google Scholar 

  89. Baufreton, J., et al.: Dopamine receptors set the pattern of activity generated in subthalamic neurons. FASEB J. 19(13), 1771–1777 (2005)

    Article  Google Scholar 

  90. Ramanathan, S., et al.: D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2.2 channels. J. Neurophysiol. 99(2), 4424–4459 (2008)

    Article  Google Scholar 

  91. Park, C., Rubchinsky, L.L.: Intermittent synchronization in a network of bursting neurons. Chaos 21, 033125 (2011)

    Article  Google Scholar 

  92. Rabinovich, M., Huerta, R., Laurent, G.: Neuroscience. Transient dynamics for neural processing. Science 321(5885), 48–50 (2008)

    Article  Google Scholar 

  93. Tsuda, I.: Hypotheses on the functional roles of chaotic transitory dynamics. Chaos 19(1), 015113 (2009)

    Article  MathSciNet  Google Scholar 

  94. Hurtado, J.M., Rubchinsky, L.L., Sigvardt, K.A.: The dynamics of tremor networks in Parkinson’s disease. In: Bezard, E. (ed.) Recent Breakthroughs in Basal Ganglia Research, pp. 249–266. Nova Publishers, New York (2006)

    Google Scholar 

  95. Rosenblum, M., Pikovsky, A.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 70(4 Pt 1), 041904 (2004)

    Article  MathSciNet  Google Scholar 

  96. Popovych, O.V., Hauptmann, C., Tass, P.A.: Control of neuronal synchrony by nonlinear delayed feedback. Biol. Cybern. 95(1), 69–85 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  97. Tukhlina, N., et al.: Feedback suppression of neural synchrony by vanishing stimulation. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 75(1 Pt 1), 011918 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid L. Rubchinsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubchinsky, L.L., Park, C. & Worth, R.M. Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn 68, 329–346 (2012). https://doi.org/10.1007/s11071-011-0223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0223-z

Keywords

Navigation