Skip to main content

Advertisement

Log in

Global stability of a delayed HIV infection model with nonlinear incidence rate

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under the assumption that the incidence rate of the infection and the removal rate of the infective by cytotoxic T lymphocytes are nonlinear, we study the global dynamics of a HIV infection model with the response of the immune system using characteristic equation, the Fluctuation lemma, and the direct Lyapunov method. The existence of a threshold parameter, i.e., the basic reproduction number or basic reproductive ratio is established and the global stability of the equilibria is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrea, L.K., Ranjan, S.: Evaluation of HIV-1 kinetic models using quantitative discrimination analysis. Bioinformatics 21(8), 1668–1677 (2005)

    Article  Google Scholar 

  2. Bonhoeffer, S., Coffin, J., Nowak, M.: Human immunodeficiency virus drug therapy and virus load. J. Virol. 71, 3275–3278 (1997)

    Google Scholar 

  3. Bonhoeffer, S., May, R., Shaw, G., Nowak, M.: Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94, 6971–6976 (1997)

    Article  Google Scholar 

  4. Cai, L., Wu, J.: Analysis of an HIV/AIDS treatment model with a nonlinear incidence. Chaos Solitons Fractals 41(1), 175–182 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Callaway, D., Perelson, A.: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64 (2002)

    Article  Google Scholar 

  6. Castillo-Chavez, C., Thieme, H.R.: Asymptotically autonomous epidemic models. In: Arino, O. et al. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity. I. Theory of Epidemics, pp. 33–50. Wuerz, Winnipeg (1995)

    Google Scholar 

  7. Ciupe, M., Bivort, B., Bortz, D., Nelson, P.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200, 1–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Culshaw, R., Ruan, S.: A delay-differential equation model of HIV infection of CD4. T-cells. Math. Biosci. 165, 27–39 (2000)

    Article  MATH  Google Scholar 

  9. Georgescu, P., Hsieh, Y.: Global stability for a virus dynamics model with nonlinear nonlinear incidence of infection and remove. SIAM J. Appl. Math. 67(2), 337–353 (2006)

    Article  MathSciNet  Google Scholar 

  10. Hale, J., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Applied Mathematical Science, vol. 99, Springer, New York (1993)

    MATH  Google Scholar 

  11. Herz, V., Bonhoeffer, S., Anderson, R., May, R., Nowak, M.: Viral dynamics in vivo: Limitations on estimations on intracellular delay and virus decay. Proc. Natl. Acad. Sci. USA 93, 7247–7251 (1996)

    Article  Google Scholar 

  12. Hirsch, W., Hanisch, H., Gariel, J.: Differential equation models of some parasitic infections: methods for the study of asymptotic behavior. Commun. Pure Appl. Math. 38, 733–753 (1985)

    Article  MATH  Google Scholar 

  13. Jacquez, J., Simon, C.: Qualitative theory of compartmental systems with lags. Math. Biosci. 180, 329–362 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, X., Yu, P., Yuan, Z., Zou, X.: Dynamics of an HIV-1 therapy model of fighting a virus with another virus. J. Biol. Dyn. 3(4), 387–409 (2009)

    Article  MathSciNet  Google Scholar 

  15. Kirschner, D.: Using mathematics to understand HIV immune dynamics. Not. Am. Math. Soc. 43, 191–202 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Lv, C., Yuan, Z.: Stability analysis of delay differential equation models of HIV-1 therapy for fighting a virus with another virus. J. Math. Anal. Appl. 352, 672–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mittler, J., Sulzer, B., Neumann, A., Perelson, A.: Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math. Biosci. 152, 63–143 (1998)

    Article  MathSciNet  Google Scholar 

  18. Mittler, J., Markowitz, M., Ho, D., Perelson, A.: Improved estimates for HIV-1 clearance rate and intracellular delay. AIDS 13, 1415–1417 (1999)

    Article  Google Scholar 

  19. Mukandavire, Z., Garira, W., Chiyaka, C.: Asymptotic properties of an HIV/AIDS model with a time delay. J. Math. Anal. Appl. 330, 916–933 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  21. Nowak, M., Bonhoeffer, S., Shaw, G., May, R.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. Theor. Biol. 184, 203–217 (1997)

    Article  Google Scholar 

  22. Perelson, A., Nelson, P.: Mathematical models of HIV dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  24. Phillips, A.: Reduction of HIV concentration during acute infection: independence from a specific immune response. Science 271, 497–499 (1996)

    Article  Google Scholar 

  25. Revilla, T., Garcia-Ramos, G.: Fighting a virus with a virus: A dynamic model for HIV-1 therapy. Math. Biosci. 185, 191–203 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tam, J.: Delay effect in a model for virus replication. IMA J. Math. Appl. Med. Biol. 16, 29–37 (1999)

    Article  MATH  Google Scholar 

  27. Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl. (2010, in press). doi:10.1016/j.jmaa.2010.08.055

    Google Scholar 

  28. Zhu, H., Zou, X.: Impact of delays in cell infection and virus production on HIV-1 dynamics. Math. Med. Biol. 25, 99–112 (2008)

    Article  MATH  Google Scholar 

  29. Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Contin. Dyn. Syst., Ser. B 12(2), 511–524 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaohui Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Z., Ma, Z. & Tang, X. Global stability of a delayed HIV infection model with nonlinear incidence rate. Nonlinear Dyn 68, 207–214 (2012). https://doi.org/10.1007/s11071-011-0219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0219-8

Keywords

Navigation