Skip to main content
Log in

Analytic solution for a nonlinear chemistry system of ordinary differential equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, under investigation is a nonlinear chemistry system of ordinary differential equations, whose mechanism is exemplified by certain radioactive series, hydrolyses, and reaction of potassium permanganate, oxalic, and manganous sulfate. Via symbolic computation, an analytic solution for the system is obtained, which has higher accuracy and can describe the mechanism more completely than those in the previous results. Moreover, analysis is performed on the system and figures are plotted for understanding the reaction mechanism. Difference between the analytic solution obtained in this paper and the approximate one obtained previously is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S.: A generalized auxiliary equation method and its application to (2+1)-dimensional Korteweg–de Vries equations. Comput. Math. Appl. 54, 1028–1038 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lü, X., Zhu, H.W., Meng, X.H., Yang, Z.C., Tian, B.: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J. Math. Anal. Appl. 336, 1305–1315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Rocha, W., Verreault, A.: Clothing up DNA for all seasons: Histone chaperones and nucleosome assembly pathways. FEBS Lett. 582, 1938–1949 (2008)

    Article  Google Scholar 

  4. Nitsch, C.: A nonlinear parabolic system arising in damage mechanics under chemical aggression. Nonlinear Anal. 61, 695–713 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, J.: Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics. Phys. Rev. E 59, 2393–2405 (1999)

    Article  MathSciNet  Google Scholar 

  6. Wang, H.Q.: Numerical studies on the split-step finite difference method for nonlinear Schrödinger equations. Appl. Math. Comput. 170, 17–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Whitcomb, J.D., Raju, I.S., Goree, J.G.: Reliability of the finite element method for calculating free edge stresses in composite laminates. Comput. Struct. 15, 23–37 (1982)

    Article  Google Scholar 

  8. Kaya, D., Inan, E.I.: Exact and numerical traveling wave solutions for nonlinear coupled equations using symbolic computation. Appl. Math. Comput. 151, 775–787 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, J.H., Wu, X.H.: Construction of solitary solution and compacton-like solution by variational iteration method. Chaos Solitons Fractals 29, 108–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, J.H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350, 87–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  12. Yao, Y.Q., Chen, D.Y., Zeng, Y.B.: N-soliton solutions for a (2+1)-dimensional breaking soliton equation with self-consistent sources. Nonlinear Anal. 72, 57–64 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Batiha, B., Noorani, M.S.M., Hashim, I.: Variational iteration method for solving multispecies Lotka–Volterra equations. Comput. Math. Appl. 54, 903–909 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ganji, D.D., Nourollahi, M., Mohseni, E.: Application of He’s methods to nonlinear chemistry problems. Comput. Math. Appl. 54, 1122–1132 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xie, F.D.: Exact solutions of some systems of nonlinear partial differential equations using symbolic computation. Comput. Math. Appl. 44, 711–716 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grujić, Z., Kalisch, H.: Gevrey regularity for a class of water-wave models. Nonlinear Anal. 71, 1160–1170 (2009)

    Article  MATH  Google Scholar 

  17. Frost, A.A., Pearson, R.G.: Kinetics and Mechanism. Wiley, New York (1961), rev. ed.

    Google Scholar 

  18. Daniel, M., Lathab, M.M.: Soliton in alpha helical proteins with interspine coupling at higher order. Phys. Lett. A 302, 94–104 (2002)

    Article  Google Scholar 

  19. Harcourt, A.V., Esson, W.: On the laws of connexion between the conditions of a chemical change and its amount. Philos. Trans. R. Soc. Lond. 156, 193–221 (1866)

    Article  Google Scholar 

  20. Moore, J.W., Pearson, R.G.: Kinetics and Mechanism, 3rd edn. Canada (1981)

  21. Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing numerical methods for ordinary differential equations. SIAM J. Numer. Anal. 9, 603–636 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sweilam, N.H., Khader, M.M.: Exact solutions of some coupled nonlinear partial differential equations using the homotopy perturbation method. Comput. Math. Appl. 58, 2134–2141 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gatto, M.A., Seery, J.B.: Numerical evaluation of the modified Bessel functions I and K. Comput. Math. Appl. 7, 203–209 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ling, Z.: Jordan type inequalities involving the Bessel and modified Bessel functions. Comput. Math. Appl. 59, 724–736 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wazwaz, A.M.: A comparison between Adomian decomposition method and Taylor series method in the series solution. Appl. Math. Comput. 97, 37–44 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg–de Vries equation in fluids. Phys. Rev. E 83, 056601 (2011)

    Article  Google Scholar 

  27. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg–de Vries equation. Phys. Scr. 81, 045402 (2010)

    Article  Google Scholar 

  28. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, W.J., Liu, Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schrödinger equations. Phys. Rev. E 80, 066608 (2009)

    Article  Google Scholar 

  29. Sun, Z.Y., Gao, Y.T., Yu, X., Meng, X.H., Liu, Y.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev–Petviashvili equation in fluid dynamics, plasma physics and electrodynamics. Wave Motion 46, 511 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, L., Gao, Y.T., Gai, X.L., Sun, Z.Y.: Inelastic interactions and double Wronskian solutions for the Whitham–Broer–Kaup model in shallow water. Phys. Scr. 80, 065017 (2009)

    Article  Google Scholar 

  31. Wang, L., Gao, Y.T., Gai, X.L.: Odd-soliton-like solutions for the variable-coefficient variant Boussinesq model in the long gravity waves. Z. Naturforsch. A 65, 1 (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, LC., Tian, B., Xue, YS. et al. Analytic solution for a nonlinear chemistry system of ordinary differential equations. Nonlinear Dyn 68, 17–21 (2012). https://doi.org/10.1007/s11071-011-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0200-6

Keywords

Navigation