Skip to main content
Log in

Finding attractors of continuous-time systems by parameter switching

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The review presents a parameter switching algorithm and his applications which allows numerical approximation of any attractor of a class of continuous-time dynamical systems depending linearly on a real parameter. The considered classes of systems are modeled by a general initial value problem which embeds dynamical systems continuous and discontinuous with respect to the state variable, of integer, and fractional order. The numerous results, presented in several papers, are systematized here on four representative known examples representing the four classes. The analytical proof of the algorithm convergence for the systems belonging to the continuous class is presented briefly, while for the other categories of systems, the convergence is numerically verified via computational tools. The utilized numerical tools necessary to apply the algorithm are contained in Appendices A, B, C, D and E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Danca, M.-F., Tang, W.K.S., Chen, G.: A switching scheme for synthesizing attractors of dissipative chaotic systems. Appl. Math. Comput. 201, 1–2 (2008)

    Article  MathSciNet  Google Scholar 

  2. Danca, M.-F.: Random parameter-switching synthesis of a class of hyperbolic attractors. Chaos 18, 033111 (2008)

    Article  MathSciNet  Google Scholar 

  3. Danca, M.-F.: Synthesizing the Lü attractor by parameter-switching. Int. J. Bifurc. Chaos 21(1), 323–331 (2011)

    Article  MathSciNet  Google Scholar 

  4. Danca, M.-F.: Finding stable attractors of a class of dissipative dynamical systems by numerical parameter switching. Dyn. Syst. 25(2), 189–201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Danca, M.-F., Wang, Q.: Synthesizing attractors of Hindmarsh-Rose neuronal systems. Nonlinear Dyn. 62(1), 437–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Danca, M.-F., Morel, C.: Attractors synthesis of a class of networks. Dyn. Contin. Discrete Impuls. Syst. B (2010, accepted)

  7. Danca, M.-F.: Attractors synthesis for a Lotka-Volterra-like system. Appl. Math. Comput. 216(7), 2107–2117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Almeida, J., Peralta-Salas, D., Romera, M.: Can two chaotic systems give rise to order? Physica D 200, 124–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Romera, M., Small, M., Danca, M.-F.: Deterministic and random synthesis of discrete chaos. Appl. Math. Comput. 192(1), 283–297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danca, M.-F., Romera, M., Pastor, G.: Alternated Julia sets and connectivity properties. Int. J. Bifurc. Chaos 19(6), 2123–2129 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mao, Y., Tang, W.K.S., Danca, M.-F.: An averaging model for the chaotic system with periodic time-varying parameter. Appl. Math. Comput. 217(1), 355–362 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lempio, F.: Difference methods for differential inclusions. Lect. Notes Econ. Math. Syst. 378, 236–273 (1992)

    Google Scholar 

  13. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Diethelm, K.: The Analysis of Fractional Differential Equations an Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    MATH  Google Scholar 

  15. Sprott, J.C.: A new class of chaotic circuit. Phys. Lett. A 266, 19–23 (2000)

    Article  Google Scholar 

  16. Lü, J.G.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006)

    Article  Google Scholar 

  17. Brown, R.: Generalizations of the Chua equations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 40(11), 878–883 (1993)

    Article  MATH  Google Scholar 

  18. Kapitanski, L., Rodnianski, I.: Shape and Morse theory of attractors. Commun. Pure Appl. Math. 53(2), 218–242 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stuart, A., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge Monographs on Applied and Computational Mathematics, vol. 2. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99(2), 177–195 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    Book  MATH  Google Scholar 

  22. Hirsch, W.M., Pugh, C.: Stable manifolds and hyperbolic sets. In: American Mathematical Society. Proc. Symp. Pure Math., vol. 14, pp. 133–164 (1970)

    Google Scholar 

  23. Hirsch, W.M., Smale, S., Devaney, L.R.: Differential Equations, Dynamical Systems and an Introduction to Chaos, 2nd edn. Elsevier/Academic Press, London (2004)

    MATH  Google Scholar 

  24. Foias, C., Jolly, M.S.: On the numerical algebraic approximation of global attractors. Nonlinearity 8, 295–319 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lempio, F.: Euler’s method revisited. Proc. Steklov Inst. Math. Mosc. 211, 473–494 (1995)

    MathSciNet  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  27. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)

    MATH  Google Scholar 

  28. Ahmed, E., Elgazzar, A.S.: On fractional order differential equations model for nonlocal epidemics. Physica A 379, 607–614 (2007)

    Article  MathSciNet  Google Scholar 

  29. El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A.: On the fractional-order logistic equation. Appl. Math. Lett. 20(7), 817–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Podlubny, I., Petrás, I., Vinagre, B.M., O’Leary, P., Dorcák, L.: Analogue realization of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002)

    Article  MATH  Google Scholar 

  31. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lü, J., Chen, G., Cheng, D., Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12(12), 2917–2926 (2002)

    Article  MATH  Google Scholar 

  33. Danca, M.-F.: Chaotic behavior of a class of discontinuous dynamical systems of fractional-order. Nonlinear Dyn. 60(4), 525–534 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Danca, M.-F., Diethlem, K.: Fractional-order attractors synthesis via parameter switchings. Commun. Nonlinear Sci. Numer. Simul. 15(12), 3745–3753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos. Trans. R. Soc. Lond. A 332(1624), 89–105 (1990)

    Article  MATH  Google Scholar 

  36. Deimling, K.: Multivalued differential equations and dry friction problems. In: Fink, A.M., Miller, R.K., Kliemann, W. (eds.) Proc. Conf. Differential & Delay Equations, Ames, Iowa, pp. 99–106. World Scientific, Singapore (1992)

    Google Scholar 

  37. Wiercigroch, M., de Kraker, B.: Applied Nonlinear Dynamics and Chaos of Mechanical Systems with Discontinuities. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  38. Danca, M.-F.: On a class of non-smooth dynamical systems: a sufficient condition for smooth vs nonsmooth solutions. Regul. Chaotic Dyn. 12(1), 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Danca, M.-F.: Numerical approximation of a class of discontinuous systems of fractional order. Nonlinear Dyn. (2010). doi:10.1007/s11071-010-9915-z

    Google Scholar 

  40. Aubin, J.-P., Cellina, A.: Differential Inclusions Set-Valued Maps and Viability Theory. Springer, Berlin (1984)

    MATH  Google Scholar 

  41. Danca, M.-F., Codreanu, S.: On a possible approximation of discontinuous dynamical systems. Chaos Solitons Fractals 13(4), 681–691 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 15(10), 3119–3151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  44. Sanders, J.A., Verhulst, F.: Averaging Methods in Nonlinear Dynamical Systems. Springer, New York (1985)

    MATH  Google Scholar 

  45. Dacunha, J.J.: Transition matrix and generalized matrix exponential via the Peano-Baker Series. J. Differ. Equ. Appl. 11(15), 1245–1264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  47. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dordrecht (1988)

    Google Scholar 

  48. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  49. Danca, M.-F.: On a class of discontinuous dynamical system. Miskolc Math. Notes 2(2), 103–116 (2001)

    MathSciNet  MATH  Google Scholar 

  50. Kastner-Maresch, A., Lempio, F.: Difference methods with selection strategies for differential inclusions. Numer. Funct. Anal. Optim. 14(5–6), 555–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius-F. Danca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danca, MF., Romera, M., Pastor, G. et al. Finding attractors of continuous-time systems by parameter switching. Nonlinear Dyn 67, 2317–2342 (2012). https://doi.org/10.1007/s11071-011-0172-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0172-6

Keywords

Navigation