Advertisement

Nonlinear Dynamics

, Volume 67, Issue 3, pp 2299–2315 | Cite as

Multi-frequency analysis of the double circular plate system non-linear dynamics

  • Katica R. (Stevanović) HedrihEmail author
  • Julijana D. Simonović
Original Paper

Abstract

This paper presents a multi-frequency analysis of non-linear dynamics in a double circular plate system. The original series of the amplitude–frequency and phase–frequency graphs as well as eigen forced time functions–frequency graphs are obtained and analyzed for stationary resonant states. The series of the frequency characteristic of the forced time non-linear harmonics are presented first. The analyses identify the presence of singularities and triggers of coupled singularities, as well as resonant jumps.

Furthermore, the analogies between non-linear phenomena of dynamics in particular multi-frequency stationary resonant regimes of multi-circular plate system, multi-beam system and according regimes in the chain system are commented upon.

Keywords

Coupled double-plate system Eigen forced time functions Mode interactions Multi-frequency Trigger of coupled singularities Resonant jumps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goroško, O.A., Hedrih (Stevanović), K.: Analitička dinamika (mehanika) diskretnih naslednih sistema (Analytical dynamics (mechanics) of discrete hereditary systems). University of Niš, Monograph, p. 426 (2001). YU ISBN 86-7181-054-2 Google Scholar
  2. 2.
    Hedrih (Stevanović), K.: Energy analysis in the non-linear hybrid system containing linear and non-linear subsystem coupled by hereditary element. Nonlinear Dyn., 51(1), 127–140 (2007). doi: 10.1007/s11071-007-9197-2 CrossRefGoogle Scholar
  3. 3.
    Hedrih (Stevanović), K.: Transversal vibrations of double-plate systems. Acta Mech. Sin. 22, 487–501 (2006) (hard cover and on line) CrossRefzbMATHGoogle Scholar
  4. 4.
    Hedrih (Stevanović), K.: Energy transfer in double plate system dynamics. Acta Mech. Sin. 24(3), 331–344 (2008). doi: 10.1007/s10409-007-0124-z CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hedrih (Stevanović), K., Simonović, J.: Transversal vibrations of a double circular plate system with visco-elastic layer excited by a random temperature field. Int. J. Nonlinear Sci. Numer. Simul. 9(1), 47–50 (2008) CrossRefGoogle Scholar
  6. 6.
    Hedrih (Stevanivic), K., Simonovic, J.: Transversal vibrations of a non-conservative double circular plate system. Facta Univ., Mech. Autom. Control Robot. 6(1), 19–64 (2007) Google Scholar
  7. 7.
    Hedrih (Stevanović), K., Simonović, J.D.: Non-linear dynamics of the sandwich double circular plate system. Int. J. Non-Linear Mech. 45(9), 902–918 (2010). doi: 10.1016/j.ijnonlinmec.2009.12.007 CrossRefGoogle Scholar
  8. 8.
    Mitropolyskiy, Y.A.: Problemi Asimptoticheskoy Teorii Nestashionarnih Kolebaniy, p. 431. Nauka, Moskva (1964) (in Russian) Google Scholar
  9. 9.
    Mitropolyskiy, Y.A., Mosseenkov, B.I.: Assimptoticheskie Resheniya Uravnyeniya v Chastnih Proizvodnih. Vichaya chkola, Kiev (1976) (in Russian) Google Scholar
  10. 10.
    Mitropolyskiy, Y.A.: Nelinyeynaya Mehanika—Asimptoticcheskie Metodi, p. 397. Institut Matematiki NAN Ukraini, Kiev (1995) Google Scholar
  11. 11.
    Mitropolyskiy, Y.A., Van Dao, N.: Lectures on Asymptotic Methods of Non-linear Dynamics, p. 494. Vietnam National University Publishing House, Hanoi (2003) Google Scholar
  12. 12.
    Nayfeh, A.H., Balachandran, B.: Experimental investigation of resonantly forced oscillations of a two-degree-of-freedom structure. Int. J. Non-Linear Mech. 25(2–3), 199–209 (1990) CrossRefGoogle Scholar
  13. 13.
    Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley Interscience, New York (1995) CrossRefzbMATHGoogle Scholar
  14. 14.
    Nayfeh, A.H.: Transfer of energy from high-frequency to low-frequency modes. In: The Second International Conference “Asymptotics in Mechanics”, St. Petersburg Marine Technical University, Russia, October 13–16, p. 44 (1996) Google Scholar
  15. 15.
    Nayfeh, A.H.: Nonlinear Interactions: Analytical, Computational and Experimental Methods. Wiley, New York (2000) zbMATHGoogle Scholar
  16. 16.
    Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley Interscience, New York (2004) CrossRefzbMATHGoogle Scholar
  17. 17.
    Rašković, D.: Teorija oscilacija (Theory of oscillations). In: Naučna Knjiga, p. 503 (1965) (in Serbian) Google Scholar
  18. 18.
    Stevanović (Hedrih), K.: Application of the asymptotic method for the investigation of the non-linear oscillations of elastic bodies—energy analysis of the oscillatory motions of elastic bodies. Doctor’s Degree Thesis, Niš, Yugoslavia (1975) (in Serbian) Google Scholar
  19. 19.
    Stevanović (Hedrih), K., Rašković, D.: Investigation of multi-frequencies vibrations in single-frequency regime in non-linear systems with many degrees of the freedom and with slowchanging parameters. J. Nonlin. Vib. Probl. 15, 201–202 (1974) zbMATHGoogle Scholar
  20. 20.
    Stevanović (Hedrih), K.: Two-frequency non-stationary forced vibrations of the beams. Math. Phys. 12, 201–202 (1972) Google Scholar
  21. 21.
    Hedrih (Stevanović), K.: Modes of the homogeneous chain dynamics. Signal Process. 86, 2678–2702 (2006) CrossRefzbMATHGoogle Scholar
  22. 22.
    Hedrih (Stevanović), K.: A model of railway track of sandwich type and it’s dynamics excited by moving load. In: Proceedings of Scientific-Expert Conference on Railways—XII RAILKON’04, Faculty of Mechanical Engineering University of Niš, Niš, Serbia, pp. 149–154 (2004) Google Scholar
  23. 23.
    Petrović, M.: Fenomenološko Preslikavanje (Phenomenological Mapping). Srpska Kraljevska Akademija, Štamparija Planeta, Beograd (1933) Google Scholar
  24. 24.
    Petrović, M.: Elementi matematičke fenomenologije (Elements of mathematical phenomenology). Srpska Kraljevska Akademija, Državna Štamparija Kraljevine Srbije, Beograd (1911) Google Scholar
  25. 25.
    Hedrih (Stevanović), K.: Analogy between models of stress state, strain state and state of the body mass inertia moments. Facta Univ., Mech. Autom. Control Robot. 1(1), 105–120 (1991) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Katica R. (Stevanović) Hedrih
    • 1
    • 2
    Email author
  • Julijana D. Simonović
    • 3
  1. 1.Department of MechnicaMathematical Institute SANU BelgradeNišSerbia
  2. 2.Faculty of Mechanical EngineeringUniversity of NišNišSerbia
  3. 3.Faculty of Mechanical EngineeringUniversity of NišNišSerbia

Personalised recommendations