Skip to main content
Log in

Generalized (2+1)-dimensional Gardner model: bilinear equations, Bäcklund transformation, Lax representation and interaction mechanisms

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present paper, with symbolic computation, a generalized (2+1)-dimensional Gardner model with t dependence is directly studied without any reductions into constant-coefficient form. Integrable properties are investigated, which mainly include the bilinear equations, bilinear Bäcklund transformation, Lax representation and analytic solutions. Dynamic properties and interaction mechanisms (inelastic compression/amplification interactions) for the shock waves are also revealed by means of the asymptotic analysis and graphical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wadati, M.: Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 38, 673–680 (1975)

    Article  MathSciNet  Google Scholar 

  2. Wadati, M.: Wave propagation in nonlinear lattice. II. J. Phys. Soc. Jpn. 38, 681–686 (1975)

    Article  MathSciNet  Google Scholar 

  3. Grimshaw, R., Pelinovsky, D., Pelinovsky, E., Talipova, T.: Wave group dynamics in weakly nonlinear long-wave models. Phys. D 159, 35–37 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chow, K.W., Grimshaw, R.H.J., Ding, E.: Interactions of breathers and solitons in the extended Korteweg–de Vries equation. Wave Motion 43, 158–166 (2005)

    Article  MathSciNet  Google Scholar 

  5. Helfrich, K.R., Melville, W.K., Miles, J.W.: On interfacial solitary waves over variable topography. J. Fluid Mech. 149, 305–317 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  6. Helfrich, K.R., Melville, W.K.: On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech. 167, 285–308 (1986)

    Article  Google Scholar 

  7. Konopelchenko, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A 102, 15–17 (1984)

    Article  MathSciNet  Google Scholar 

  8. Konopelchenko, B.G.: Inverse spectral transform for the (2+1)-dimensional Gardner equation. Inv. Probl. 7, 739–754 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Geng, X.G., Cao, C.W.: Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity 14, 1433–1452 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Anders, I.: Long-time asymptotics of non-decaying solutions of the (2+1)-dimensional Gardner equation. Asympt. Anal. 19, 185–207 (1999)

    MATH  MathSciNet  Google Scholar 

  11. Chen, Y., Yan, Z.Y.: New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method. Chaos Solitons Fract. 26, 399–406 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yu, G.F., Tam, H.W.: On the (2+1)-dimensional Gardner equation: determinant solutions and pfaffianization. J. Math. Anal. Appl. 330, 989–1001 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, H.Q., Tian, B., Li, J., Xu, T., Zhang, Y.X.: Symbolic-computation study of integrable properties for the (2+1)-dimensional Gardner equation with the two-singular manifold method. IMA J. Appl. Math. 74, 46–61 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Xu, T., Tian, B., Zhang, H.Q., Li, J.: Integrable decompositions for the (2+1)-dimensional Gardner equation. Z. Angew. Math. Phys. 61, 293–308 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gear, J.A., Grimshaw, R.: A second-order theory for solitary waves in shallow fluids. Phys. Fluids 26, 14–29 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lamb, K.G., Yan, L.: The evolution of internal wave undular bores: comparisons of a fully nonlinear numerical model with weakly-nonlinear theory. J. Phys. Oceanogr. 26, 2712–2734 (1996)

    Article  Google Scholar 

  17. Djordjevic, V., Redekopp, L.: The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr. 8, 1016–1024 (1978)

    Article  MATH  Google Scholar 

  18. Kakutani, T., Yamasaki, N.: Solitary waves on a two-layer fluid. J. Phys. Soc. Jpn. 45, 674–679 (1978)

    Article  Google Scholar 

  19. Miles, J.W.: On internal solitary waves II. Tellus 33, 397–401 (1981)

    Article  MathSciNet  Google Scholar 

  20. Holloway, P.E., Pelinovsky, E., Talipova, T., Barnes, B.: A nonlinear model of internal tide transformation on the Australian North West Shelf. J. Phys. Oceanogr. 27, 871–896 (1997)

    Article  Google Scholar 

  21. Talipova, T., Pelinovsky, E., Kouts, T.: Kinematic characteristics of an internal wave field in the Gotland Deep in the Baltic Sea. Oceanology 38, 33–42 (1998)

    Google Scholar 

  22. Li, J., Xu, T., Meng, X.H., Zhang, Y.X., Zhang, H.Q., Tian, B.: Lax pair, Bäklund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl. 336, 1443–1455 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lü, X., Tian, B., Zhang, H.Q., Xu, T., Li, H.: Integrability study on a generalized (2+1)-dimensional variable-coefficient Gardner model with symbolic computation. Chaos 20, 043125 (2010)

    Article  MathSciNet  Google Scholar 

  24. Biswas, A.: 1-Soliton solution of the generalized Zakharov–Kuznetsov equation with nonlinear dispersion and time-dependent coefficients. Phys. Lett. A 373, 2931–2934 (2009)

    Article  MathSciNet  Google Scholar 

  25. Biswas, A.: Quasistationary optical solitons with parabolic law nonlinearity. Opt. Comm. 216, 427–437 (2003)

    Article  Google Scholar 

  26. Saha, M., Sarma, A.K., Biswas, A.: Dark optical solitons in power law media with time-dependent coefficients. Phys. Lett. A 373, 4438–4441 (2009)

    Article  Google Scholar 

  27. Lü, X., Tian, B., Xu, T., Cai, K.J., Liu, W.J.: Analytical study of the nonlinear Schrödinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates via symbolic computation. Ann. Phys. (N. Y.) 323, 2554–2565 (2008)

    Article  MATH  Google Scholar 

  28. Lü, X., Li, L.L., Yao, Z.Z., Geng, T., Cai, K.J., Zhang, C., Tian, B.: Symbolic computation study of a generalized variable-coefficient two-dimensional Korteweg–de Vries model with various external-force terms from shallow water waves, plasma physics and fluid dynamics. Z. Naturf. A 64, 222–228 (2009)

    Google Scholar 

  29. Tian, B., Gao, Y.T.: Spherical nebulons and Backlund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation. Eur. Phys. J. D 33, 59–65 (2005)

    Article  Google Scholar 

  30. Gao, Y.T., Tian, B.: Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves. Phys. Lett. A 349, 314–319 (2006)

    Article  Google Scholar 

  31. Lü, X., Li, J., Zhang, H.Q., Xu, T., Tian, B.: Integrability aspects with optical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrödinger system from inhomogeneous optical fibers. J. Math. Phys. 51, 043511 (2010)

    Article  MathSciNet  Google Scholar 

  32. Lü, X., Zhu, H.W., Meng, X.H., Yang, Z.C., Tian, B.: Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications. J. Math. Anal. Appl. 336, 1305–1315 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ma, W.X.: Diversity of exact solutions to a restricted Boiti–Leon–Pempinelli dispersive long-wave system. Phys. Lett. A 319, 325–333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Ma, W.X., Wu, H.Y., He, J.S.: Partial differential equations possessing Frobenius integrable decompositions. Phys. Lett. A 364, 29–32 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ma, W.X., Bullough, R.K., Caudrey, P.J.: Graded symmetry algebras of time-dependent evolution equations and application to the modified KP equations. Nonl. Math. Phys. 4, 293–309 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  36. Lü, X., Zhu, H.W., Yao, Z.Z., Meng, X.H., Zhang, C., Yang, Z.C., Tian, B.: Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications. Ann. Phys. (N. Y.) 323, 1947–1955 (2008)

    Article  MATH  Google Scholar 

  37. Sun, Z.Y., Gao, Y.T., Yu, X., Meng, X.H., Liu, Y.: Inelastic interactions of the multiple-front waves for the modified Kadomtsev–Petviashvili equation in fluid dynamics, plasma physics and electrodynamics. Wave Motion 46, 511–521 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wang, L., Gao, Y.T., Gai, X.L.: Odd-soliton-like solutions for the variable-coefficient variant Boussinesq model in the long gravity waves. Z. Naturforsch. A 65, 818–828 (2010)

    Google Scholar 

  39. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, Y.: Formation of vortices in a combined pressure-driven electro-osmotic flow through the insulated sharp tips under finite Debye length effects. Colloid Surface A 366, 1–11 (2010)

    Article  Google Scholar 

  40. Lü, X., Tian, B., Sun, K., Wang, P.: Bell-polynomial manipulations on the Bäcklund transformations and Lax pairs for some soliton equations with one Tau-function. J. Math. Phys. 51, 113506 (2010)

    Article  MathSciNet  Google Scholar 

  41. Wang, L., Gao, Y.T., Gai, X.L., Sun, Z.Y.: Inelastic interactions and double Wronskian solutions for the Whitham–Broer–Kaup model in shallow water. Phys. Scr. 80, 065017 (2009)

    Article  Google Scholar 

  42. Hereman, W., Takaoka, M.: Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J. Phys. A 23, 4805–4822 (1990)

    Article  MathSciNet  Google Scholar 

  43. Sun, Z.Y., Gao, Y.T., Yu, X., Liu, W.J., Liu, Y.: Bound vector solitons and soliton complexes for the coupled nonlinear Schröinger equations. Phys. Rev. E 80, 066608 (2009)

    Article  Google Scholar 

  44. Wang, L., Gao, Y.T., Qi, F.H.: Multi-solitonic solutions for the variable-coefficient variant Boussinesq model of the nonlinear water waves. J. Math. Anal. Appl. 372, 110–119 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  45. Steeb, W.H.: Quantum Mechanics Using Computer Algebra: Includes Sample Programs for Reduce, Maple, Mathematica and C++. World Sci., Singapore (1994)

    Google Scholar 

  46. Lü, X., Geng, T., Zhang, C., Zhu, H.W., Meng, X.H., Tian, B.: Multi-soliton solutions and their interactions for the (2+1)-dimensional Sawada–Kotera model with truncated Painlevé expansion, Hirota bilinear method and symbolic computation. Int. J. Mod. Phys. B 23, 5003–5015 (2009)

    Article  MATH  Google Scholar 

  47. Hu, X.B.: Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation. J. Phys. A 27, 201–214 (1994)

    Article  MATH  Google Scholar 

  48. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  49. Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Prog. Theor. Phys. Suppl. 59, 64–100 (1976)

    Article  MathSciNet  Google Scholar 

  50. Hirota, R.: A new form of Bäcklund transformations and its relation to the inverse scattering problem. Prog. Theor. Phys. 52, 1498–1512 (1974)

    Article  MATH  Google Scholar 

  51. Rogers, C., Shadwick, W.F.: Bäcklund Transformations and their Applications. Academic Press, New York (1982)

    MATH  Google Scholar 

  52. Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comp. Math. Appl. 61, 950–959 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  53. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: Solitonic propagation and interaction for a generalized variable-coefficient forced Korteweg-de Vries equation in fluids. Phys. Rev. E 83, 056601 (2011)

    Article  Google Scholar 

  54. Yu, X., Gao, Y.T., Sun, Z.Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation. Phys. Scr. 81, 045402 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, X., Tian, B., Zhang, HQ. et al. Generalized (2+1)-dimensional Gardner model: bilinear equations, Bäcklund transformation, Lax representation and interaction mechanisms. Nonlinear Dyn 67, 2279–2290 (2012). https://doi.org/10.1007/s11071-011-0145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0145-9

Keywords

Navigation