Skip to main content
Log in

Robust adaptive intelligent sliding model control for a class of uncertain chaotic systems with unknown time-delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a robust adaptive intelligent sliding model control (RAISMC) scheme for a class of uncertain chaotic systems with unknown time-delay is proposed. A sliding surface dynamic is appropriately constructed to guarantee the reachability of the specified sliding surface. Within this scheme, neuro-fuzzy network (NFN) is utilized to approximate the unknown continuous function. The robust controller is an adaptive controller used to dispel the unknown uncertainty and approximation errors. The adaptive parameters of the control system are tuned on-line by the derived adaptive laws based on a Lyapunov stability analysis. Using appropriate Lyapunov–Krasovskii (L–K) functional in the Lyapunov function candidate, the uncertainty caused by unknown time delay is compensated and the global asymptotic stability of the error dynamics system in the specified switching surface is accomplished. Finally, the proposed RAISMC system is applied to control a Hopfield neural network, Cellular neural networks, Rössler system, and to achieve synchronization between the Chen system with two time delays with Rössler system without time delay. The results are representative of outperformance of the proposed method in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G., Dong, X.: From Chaos to Order. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  2. Saif, F.: Classical and quantum chaos in atom optics. Phys. Rep. 419, 207–258 (2005)

    Article  Google Scholar 

  3. Wieczorek, S., Chow, W.W.: Bifurcations and chaos in a semiconductor laser with coherent or noisy optical injection. Opt. Commun. 282, 2367–2379 (2009)

    Article  Google Scholar 

  4. Yang, X.S., Yuan, Q.: Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69, 232–241 (2005)

    Article  Google Scholar 

  5. Govindan, R.B., Narayanan, K., Gopinathan, M.S.: On the evidence of deterministic chaos in ECG: surrogate and predictability analysis. Chaos 8, 495–502 (1998)

    Article  MATH  Google Scholar 

  6. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carrol, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38, 453–456 (1991)

    Article  Google Scholar 

  8. Harb, A.M., Zahar, A.A., Al Qaisia, A.A., Zohdy, M.A.: Recursive backstepping control of chaotic doffing oscillators. Chaos Solitons Fractals 34, 639–45 (2007)

    Article  MATH  Google Scholar 

  9. Rafikov, M., Balthazar, J.M.: On an optimal control design for Rösler system. Phys. Lett. A 333, 241–245 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhang, Y., Sun, J.: Controlling chaotic Lu systems using impulsive control. Phys. Lett. A 342, 256–262 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Commun. Nonlinear Sci. Numer. Simul. 13, 1246–1255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, S.H., Lu, J.: Parameter identification and synchronization of chaotic systems based upon adaptive control. Chaos Solitons Fractals 14, 643–647 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: A survey. IEEE Trans. Ind. Electron. 40, 2–22 (1993)

    Article  Google Scholar 

  14. Mou, C., Jiang, C.-S., Bin, J., Wu, Q.-X.: Sliding mode synchronization controller design with neural network for uncertain chaotic systems. Chaos Solitons Fractals 39, 1856–1863 (2009)

    Article  MATH  Google Scholar 

  15. Sun, Z., Xu, W., Yang, X., Fang, T.: Effects of time delays on bifurcation and chaos in a non-autonomous system with multiple time delays. Chaos Solitons Fractals 31, 39–53 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhang, D., Xu, J.: Projective synchronization of different chaotic time-delayed neural networks based on integral sliding mode controller. Appl. Math. Comput. 217, 164–174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feng, C.F.: Projective synchronization between two different time-delayed chaotic systems using active control approach. Nonlinear Dyn. 62, 453–459 (2010)

    Article  MATH  Google Scholar 

  18. Yan, J.J., Lin, J.S., Liao, T.L.: Robust dynamic compensator for a class of time delay systems containing saturating control input. Chaos Solitons Fractals 31, 1223–1231 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yu, W.: A LMI-based approach to global asymptotic stability of neural networks with time varying delays. Nonlinear Dyn. 48, 165–174 (2007)

    Article  MATH  Google Scholar 

  20. Utkin, V.I.: Sliding Mode in Control and Optimization. Springer, Berlin (1992)

    Google Scholar 

  21. Vasegh, N., Khaki Sedigh, A.: Chaos control in delayed chaotic systems via sliding mode based delayed feedback. Chaos Solitons Fractals 40, 159–165 (2009)

    Article  MATH  Google Scholar 

  22. Zhang, D., Xu, J.: Projective synchronization of different chaotic time-delayed neural networks based on integral sliding mode controller. Appl. Math. Comput. 217, 164–174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least square learning. IEEE Trans. Neural Netw. 3, 807–814 (1992)

    Article  Google Scholar 

  24. Wang, L.X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  25. Lee, S.J., Hou, C.L.: A neural-Fuzzy system for congestion control in ATM networks. IEEE Trans. Syst. Man Cybern. 30, 2–9 (2000)

    Article  Google Scholar 

  26. Poursamad, A., Markazi, A.H.D.: Adaptive fuzzy sliding-mode control for multi-input multi-output chaotic systems. Chaos Solitons Fractals 42, 3100–3109 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bessa, Wallace M., de Paula, Aline S., Savi, Marcelo A.: Chaos control using an adaptive fuzzy sliding mode controller with application to a nonlinear pendulum. Chaos Solitons Fractals 42, 784–791 (2009)

    Article  MATH  Google Scholar 

  28. Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57, 431–439 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, M., Chen, W.H.: Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems. Chaos Solitons Fractals 41, 2716–2724 (2009)

    Article  MATH  Google Scholar 

  30. Hsu, C.F.: Adaptive fuzzy wavelet neural controller design for chaos synchronization. Expert Syst. Appl. 38, 10475–10483 (2011)

    Article  Google Scholar 

  31. Chen, C.S.: Quadratic optimal neural fuzzy control for synchronization of uncertain chaotic systems. Expert Syst. Appl. 36, 11827–11835 (2009)

    Article  Google Scholar 

  32. Hale, J.: Theory of Functional Differential Equations, 2nd edn. Springer, New York (1977)

    Book  MATH  Google Scholar 

  33. Meng, J., Wang, X.W.: Generalized projective synchronization of a class of delayed neural networks. Mod. Phys. Lett. B 22, 181–190 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lin, C.J., Liu, Y.C.: Image backlight compensation using neuro-fuzzy networks with immune particle swarm optimization. Expert Syst. Appl. 36, 5212–5220 (2009)

    Article  Google Scholar 

  35. Shieh, H.L., Yang, Y.K., Chang, P.L., Jeng, J.T.: Robust neural-fuzzy method for function approximation. Expert Syst. Appl. 36, 6903–6913 (2009)

    Article  Google Scholar 

  36. Jassar, S., Liao, Z., Zhao, L.: Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems. Build. Environ. 44, 1609–1616 (2009)

    Article  Google Scholar 

  37. Sastry, S., Bodson, M.: Adaptive Control—Stability, Convergence, and Robustness. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  38. Zhang, D., Xu, J.: Projective synchronization of different chaotic time-delayed neural networks based on integral sliding mode controller. Appl. Math. Comput. 217, 164–174 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ghosh, D., Chowdhury, A.R., Saha, P.: Multiple delay Rössler system-bifurcation and chaos control. Chaos Solitons Fractals 35, 472–485 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Cheng, C.K., Kuo, H.H., Hou, Y.Y., Hwang, C.C., Liao, T.L.: Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays. Physica A 387, 3093–3102 (2008)

    Article  MathSciNet  Google Scholar 

  41. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–8 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Farid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farid, Y., Bigdeli, N. Robust adaptive intelligent sliding model control for a class of uncertain chaotic systems with unknown time-delay. Nonlinear Dyn 67, 2225–2240 (2012). https://doi.org/10.1007/s11071-011-0141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0141-0

Keywords

Navigation