Skip to main content
Log in

An approximate decoupled dynamics and kinematics analysis of legless locomotion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present a novel analysis technique to understand the dynamics of a recently described locomotion mode called legless locomotion. Legless locomotion is a locomotion mode available to a legged robot when it becomes high-centered, that is, when its legs do not touch the ground. Under these conditions, the robot may still locomote in the plane by swinging its legs in the air, rocking on its body, and taking advantage of the nonholonomic contact constraints. Legless locomotion is unique from all previously studied locomotion modes, since it combines the effect of oscillations due to controls and gravity, nonholonomic contact constraints, and a configuration-dependent inertia. This complex interaction of phenomena makes dynamics analysis and motion planning difficult, and our proposed analysis technique simplifies the problem by decoupling the robot’s oscillatory rotational dynamics from its contact kinematics and also decoupling the dynamics along each axis. We show that the decoupled dynamics models are significantly simpler, provide a good approximation of the motion, and offer insight into the robot’s dynamics. Finally, we show how the decoupled models help in motion planning for legless locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balasubramanian, R., Rizzi, A.A., Mason, M.T.: Legless locomotion: A novel locomotion technique for legged robots. Int. J. Robot. Res. 27, 575–594 (2008)

    Article  Google Scholar 

  2. Craig, J.J.: Introduction to Robotics. Addison Wesley, Reading (1989)

    MATH  Google Scholar 

  3. Murray, J.J., Johnson, D.W.: The linearized dynamic robot model: Efficient computation and practical applications. In: Proceedings of the IEEE Conference on Decision and Control, Tampa, FL, pp. 1659–1664 (1989)

    Chapter  Google Scholar 

  4. Jain, A., Rodriguez, G.: Linearization of manipulator dynamics using spatial operators. IEEE Trans. Syst. Man Cybern. 23(1), 239–248 (1993)

    Article  MATH  Google Scholar 

  5. Bullo, F., Lewis, A.D., Lynch, K.M.: Controllable kinematic reductions for mechanical systems: concepts, computational tools, and examples. In: Mathematical Theory of Networks and Systems, Notre Dame, IN, August 2002

    Google Scholar 

  6. Walsh, G., Sarti, A., Sastry, S.: Algorithms for steering on the group of rotations. In: The proceedings of the American Control Conference, San Francisco, CA, pp. 1312–1316 (1993)

    Google Scholar 

  7. Bullo, F., Lynch, Kevin M.: Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems. IEEE Trans. Robot. Autom. 17(4), 402–412 (2001)

    Article  Google Scholar 

  8. Endo, G., Togawa, K.: S. Hirose. A self-contained and terrain-adaptive active cord mechanism. Adv. Robot. 13(3), 243–244 (1999)

    Article  Google Scholar 

  9. Lewis, A., Ostrowski, J., Murray, R., Burdick, J.: Nonholonomic mechanics and locomotion: the snakeboard example. In: Proceedings of the International Conference on Robotics and Automation, San Diego, CA, vol. 3, pp. 2391–2397 (1994)

    Google Scholar 

  10. Krishnaprasad, P.S., Tsakiris. Oscillations, Dimitris P.: SE(2)- snakes and motion control: a study of the roller racer. Technical report, Institute for Systems Research, University of Maryland (1998)

  11. Papadopoulous, E., Dubowsky, S.: On the nature of control algorithms for free-floating space manipulators. IEEE Trans. Robot. Autom. 7(6), 750–758 (1991)

    Article  Google Scholar 

  12. Fernandes, C., Gurvits, L., Li, Z.: Near optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Trans. Autom. Control 39(3), 450–463 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rui, C., Kolmanovsky, I.V., Mc-Clamroch, N.H.: Nonlinear attitude and shape control of space-craft with articulated appendages and reaction wheels. IEEE Trans. Autom. Control 45(8), 1455–1469 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chitta, S., Cheng, P., Frazzoli, E., Robotrikke, V. Kumar: A novel undulatory locomotion system. In: Proceedings of the International Conference on Robotics and Automation, Barcelona, Spain, pp. 1597–1602 (2005)

    Chapter  Google Scholar 

  15. Shammas, E.: Generalized motion planning for underactuated mechanical systems. Ph.D. thesis, Carnegie Mellon University (2006)

  16. Balasubramanian, R., Rizzi, A.A., Mason, M.T.: Legless locomotion: models and experimental demonstration. In: Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, pp. 1803–1808 (2004)

    Google Scholar 

  17. Uicker, J.J.: Dynamic force analysis of spatial linkages. ASME Trans. J. Appl. Mech. 34, 418–424 (1967)

    Article  Google Scholar 

  18. Kahn, M.E., Roth, B.: The near minimumtime control of open-loop articulated kinematic chains. J. Dyn. Syst. Meas. Control 93, 164–172 (1971)

    Article  Google Scholar 

  19. Luh, J.Y.S., Walker, M.W., Paul, R.P.C.: On-line computational scheme for mechanical manipulators. Trans. ASME, J. Dyn. Syst., Meas. Control 102(2), 69–76 (1980)

    Article  MathSciNet  Google Scholar 

  20. Kovecses, J., Piedboeuf, J.-C., Lange, C.: Dynamics modeling and simulation of constrained robotic systems. IEEE/ASME Trans. Mechatron. 8(2), 165–177 (2003)

    Article  Google Scholar 

  21. Lee, C.S.G., Lee, B.H., Nigam, R.: Development of the generalized d’Alembert equations of motion for mechanical manipulators. In: Proc. of the 22nd IEEE Conference on Decision and Control, San Antonio, TX, vol. 22, pp. 1205–1210 (1983). doi:10.1109/CDC.1983.269715

    Chapter  Google Scholar 

  22. Song, S.-M., Lin, Y.-J.: An alternative method for manipulator kinetic analysis-the d’Alembert method. In: Proceedings of the International Conference on Robotics and Automation, pp. 1361–1366 (1988). doi:10.1109/ROBOT.1988.12257

    Google Scholar 

  23. Featherstone, D., Orin, D.E.: Robot dynamics: equations and algorithms. In: Proceedings of the IEEE Int. Conf. Robotics and Automation, San Francisco, CA, pp. 826–834 (2000)

    Google Scholar 

  24. Montana, D.J.: The kinematics of contact and grasp. Int. J. Robot. Res. 7(3), 17–32 (1988)

    Article  Google Scholar 

  25. Li, Z., Canny, J.: Motion of two rigid bodies with rolling constraint. IEEE Trans. Robot. Autom. 6(1), 62–72 (1990)

    Article  Google Scholar 

  26. Murray, R.M., Li, Z.X., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  27. Ostrowski, J.P.: The mechanics and control of undulatory robotic locomotion. Ph.D. thesis, California Institute of Technology (1996)

  28. Camicia, C., Conticelli, F., Bicchi, A.: Nonholonomic kinematics and dynamics of the sphericle. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Takamatsu, Japan, pp. 805–810 (2000)

    Google Scholar 

  29. Bhattacharya, S., Agrawal, S.K.: Spherical rolling robot: a design and motion planning studies. IEEE Trans. Robot. Autom. 16(6), 835–839 (2000)

    Article  Google Scholar 

  30. Laumond, J.P.: Robot Motion Planning and Control. Springer, Berlin (1998)

    Book  Google Scholar 

  31. Agahi, D., Kreutz-Delgado, K.: Approximate dynamic decoupling of multilimbed robotic systems. In: Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Pittsburgh, PA, pp. 480–485 (1995)

    Google Scholar 

  32. Caccavale, F., Siciliano, B., Villani, L.: The tricept robot: Dynamics and impedance control. IEEE/ASME Trans. Mechatron. 8(2), 263–268 (2003)

    Article  Google Scholar 

  33. Chen, W., Yeo, S.H., Low, K.H.: Modular formulation for dynamics of multi-legged robots. In: Proc. of the International Conference on Advanced Robotics, Monterey, CA, pp. 279–284 (1997). doi:10.1109/ICAR.1997.620195

    Google Scholar 

  34. Bullo, F., Lewis, A.D.: Kinematic controllability and motion planning for the snakeboard. IEEE Trans. Robot. Autom. 19(3), 494–498 (2003)

    Article  Google Scholar 

  35. Shammas, E.A., Choset, H., Rizzi, A.A.: Towards a unified approach to motion planning for dynamic underactuated mechanical systems with non-holonomic constraints. Int. J. Robot. Res. 26(10), 1075–1124 (2007)

    Article  Google Scholar 

  36. Shammas, E.A., Choset, H., Rizzi, A.A.: Geometric motion planning analysis for two classes of underactuated mechanical systems. Int. J. Robot. Res. 26(10), 1043–1073 (2007)

    Article  Google Scholar 

  37. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A universal concept in nonlinear sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  38. Jose, J.V., Saletan, E.J.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  39. Driels, M.: Linear Control Systems Engineering. Mcgraw-Hill College, New York (1995)

    Google Scholar 

  40. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems Modeling, Analysis, and Design for Simple Mechanical Control Systems. Springer, New York (2004)

    Google Scholar 

  41. Abraham, R., Marsden, J.E.: Foundations of Mechanics. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  42. Balasubramanian, R., Rizzi, A.A.: Kinematic re-duction and planning using symmetry for a variable inertia mechanical system. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, vol. 4, pp. 3829–3834 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Balasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, R., Rizzi, A.A. & Mason, M.T. An approximate decoupled dynamics and kinematics analysis of legless locomotion. Nonlinear Dyn 67, 2123–2138 (2012). https://doi.org/10.1007/s11071-011-0134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0134-z

Keywords

Navigation