Skip to main content
Log in

Modeling non-equilibrium traffic dynamics in a Lagrangian framework

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a formulation for modeling macroscopic traffic flow using a modified speed–density relationship. The flow model consists of a nonlinear hyperbolic system of conservation laws. The proposed modification distinguishes between acceleration and deceleration by assuming a different equilibrium velocity for a given traffic density based on whether a platoon of vehicles is accelerating or decelerating. We examine the appropriateness of this modification to two prominent traffic flow models in a Lagrangian reference frame, which we solve computationally. We show that a Lagrangian coordinate system is ideal for the incorporation of the proposed modification due to its ability to track the behavior of moving vehicles. We see that the modification is particularly well suited to “second order” models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argall, B., Hinde, C., Cheleshkin, E., Greenberg, J.M., Lin, P.J.: A rigorous treatment of a follow-the-leader traffic model with traffic lights present. SIAM J. Appl. Math. 63(1), 149–168 (2002). doi:10.1137/S0036139901391215. http://link.aip.org/link/?SMM/63/149/1

    Article  MATH  MathSciNet  Google Scholar 

  2. Aw, A., Klar, A., Rascle, M., Materne, T.: Derivation of continuum traffic flow models from microscopic follow-the-leader models. SIAM J. Appl. Math. 63(1), 259–278 (2002). doi:10.1137/S0036139900380955. http://link.aip.org/link/?SMM/63/259/1

    Article  MATH  MathSciNet  Google Scholar 

  3. Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000). doi:10.1137/S0036139997332099. http://link.aip.org/link/?SMM/60/916/1

    Article  MATH  MathSciNet  Google Scholar 

  4. Courant, R., Friedrichs, K.O.: Supersonic Flows and Shock Waves. Springer, New York (1948)

    Google Scholar 

  5. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res., Part B, Methodol. 29(4), 277–286 (1995). doi:10.1016/0191-2615(95)00007-Z

    Article  Google Scholar 

  6. Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. USSR Sb. 47, 271–306 (1959)

    MathSciNet  Google Scholar 

  7. Greenberg, J.M.: Extensions and amplifications of a traffic model of Aw and Rascle. SIAM J. Appl. Math. 62(3), 729–745 (2002). doi:10.1137/S0036139900378657. http://link.aip.org/link/?SMM/62/729/1

    Article  Google Scholar 

  8. Greenberg, J.M.: Congestion redux. SIAM J. Appl. Math. 64(4), 1175–1185 (2004). doi:10.1137/S0036139903431737. http://link.aip.org/link/?SMM/64/1175/1

    Article  MATH  MathSciNet  Google Scholar 

  9. Greenberg, J.M., Klar, A., Rascle, M.: Congestion on multilane highways. SIAM J. Appl. Math. 63(3), 818–833 (2003). doi:10.1137/S0036139901396309. http://link.aip.org/link/?SMM/63/818/1

    Article  MATH  MathSciNet  Google Scholar 

  10. Greenshields, B.D.: A study of traffic capacity. In: HRB Proc., vol. 14, pp. 448–477 (1934)

    Google Scholar 

  11. Herty, M., Rascle, M.: Coupling conditions for a class of second-order models for traffic flow. SIAM J. Math. Anal. 38(2), 595–616 (2006). doi:10.1137/05062617X. http://link.aip.org/link/?SJM/38/595/1

    Article  MathSciNet  Google Scholar 

  12. Lebacque, J.P., Mammar, S., Haj-Salem, H.: The Aw-Rascle and Zhang’s model: Vacuum problems, existence and regularity of the solutions of the Riemann problem. Transp. Res., Part B, Methodol. 41(7), 710–721 (2007). doi:10.1016/j.trb.2006.11.005

    Article  Google Scholar 

  13. Leveque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  14. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 229(1178), 317–345 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, T.P.: Hyperbolic conservation-laws with relaxation. Commun. Math. Phys. 108(1), 153–175 (1987)

    Article  Google Scholar 

  16. Moutari, S., Rascle, M.: A hybrid Lagrangian model based on the Aw–Rascle traffic flow model. SIAM J. Appl. Math. 68(2), 413–436 (2007). doi:10.1137/060678415. http://link.aip.org/link/?SMM/68/413/1

    Article  MATH  MathSciNet  Google Scholar 

  17. Newell, G.F.: Instability in dense highway traffic, a review. In: Almond, J. (ed.) Proceedings of the Second International Symposium on the Theory of Traffic Flow, Paris, pp. 73–83 (1965)

    Google Scholar 

  18. Payne, H.J.: Models of freeway traffic and control. In: Simulation Council Proceedings. Mathematical Models of Public Systems, vol. 1, pp. 51–61 (1971)

    Google Scholar 

  19. Richards, P.I.: Shock waves on the highway. Operations Research 4(1), 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  20. Roe, P.L.: Approximate Riemann solvers parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). doi:10.1016/0021-9991(81)90128-5

    Article  MATH  MathSciNet  Google Scholar 

  21. Treiterer, J., Myers, J.A.: The hysteresis phenomena in traffic flow. In: Buckley, D.J. (ed.) Proceedings of the Sixth Symposium on Transportation and Traffic Theory, pp. 13–38 (1974)

    Google Scholar 

  22. Whitham, G.B.: Linear and Nonlinear Waves, Pure and Applied Math. Wiley-Interscience, New York (1974)

    Google Scholar 

  23. Zhang, H.M.: A mathematical theory of traffic hysteresis. Transp. Res., Part B, Methodol. 33(1), 1–23 (1999). doi:10.1016/S0191-2615(98)00022-8. http://www.sciencedirect.com/science/article/B6V99-3V7JR3Y-1/2/2c8d06da50791ca31b3c7324a0274897

    Article  MATH  Google Scholar 

  24. Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res., Part B, Methodol. 36(3), 275–290 (2002). doi:10.1016/S0191-2615(00)00050-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tigran T. Tchrakian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tchrakian, T.T., Basu, B. Modeling non-equilibrium traffic dynamics in a Lagrangian framework. Nonlinear Dyn 67, 1957–1968 (2012). https://doi.org/10.1007/s11071-011-0121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0121-4

Keywords

Navigation