Skip to main content
Log in

On the predictability of elasto-plastic and geometrically non-linear oscillations of beams under harmonic excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Vibrations in one plane of beams with fixed ends, vibrating in the geometrically non-linear and elasto-plastic regimes under the influence of harmonic external forces, are studied. A p-version finite element that considers transverse and longitudinal displacements, as well as shear deformation, is employed. The incremental theory of plasticity with isotropic hardening is followed. Numerical methods are employed to solve the differential equations of motion and to carry out integrals where plastic terms exist. The main interest of this work is that “chaotic-like” behavior—in the sense of unpredictable behavior of an apparently deterministic system—is discovered. This behavior is explained by a buckling phenomenon induced by the plastic strains: no longitudinal external force, other than the boundary forces, exists in the cases investigated. Since the plastic strains depend on the past history, the predictions of the long term behavior are also affected by the different predictions on the brief transition phase. An eigenvalue problem is defined to compute eigenvalues that provide an indication that a bifurcation induced by the plastic strains is likely to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Dieter, G.E.: Mechanical Metallurgy. McGraw-Hill, New York (1986)

    Google Scholar 

  3. Kojić, M., Bathe, K.-J.: Inelastic Analysis of Solids and Structures. Springer, Berlin (2005)

    Google Scholar 

  4. Symonds, P.S., Yu, T.X.: Counter-intuitive behavior in a problem of elastic-plastic beam dynamics. ASME J. Appl. Mech. 52, 517–522 (1985)

    Article  Google Scholar 

  5. Lee, J.-Y., Symonds, P.S., Borino, G.: Chaotic responses of a two-degree-of freedom elastic-plastic beam model to short pulse loading. ASME J. Appl. Mech. 59, 711–721 (1992)

    Article  Google Scholar 

  6. Liu, Y.M., Ma, G.W., Li, Q.M.: Chaotic and asymmetrical beam response to impulsive load. Int. J. Solids Struct. 41, 765–784 (2004)

    Article  MATH  Google Scholar 

  7. Ma, G.W., Liu, Y.M., Zhao, J., Li, Q.M.: Dynamic asymmetrical instability of elastic-plastic beams. Int. J. Mech. Sci. 47, 43–62 (2005)

    Article  MATH  Google Scholar 

  8. Karagiozov, V., Karagiozova, D.: Chaotic phenomena in the dynamic buckling of an elastic-plastic column under an impact. Nonlinear Dyn. 9, 265–280 (1996)

    Article  Google Scholar 

  9. Lepik, U.: Elastic-plastic vibrations of a buckled beam. Int. J. Non-Linear Mech. 30, 129–139 (1995)

    Article  MATH  Google Scholar 

  10. Ziegler, F., Irschik, H.: Dynamic analysis of elastic-plastic beams by means of thermoelastic solutions. Int. J. Solids Struct. 21, 819–829 (1985)

    Article  MATH  Google Scholar 

  11. Irschik, H.: Biaxial dynamic bending of elastoplastic beams. Acta Mech. 62, 155–167 (1986)

    Article  MATH  Google Scholar 

  12. Fotiu, P., Irschik, H., Ziegler, F.: Forced vibrations of an elasto-plastic and deteriorating beam. Acta Mech. 69, 193–203 (1987)

    Article  MATH  Google Scholar 

  13. Manoach, E., Karagiozova, D.: Dynamic response of thick elastic-plastic beams. Int. J. Mech. Sci. 35, 909–919 (1993)

    Article  MATH  Google Scholar 

  14. Gerstmayr, J., Holl, H.J., Irschik, H.: Development of plasticity and damage in vibrating structural elements performing guided rigid-body motions. Arch. Appl. Mech. 71, 135–145 (2001)

    Article  MATH  Google Scholar 

  15. Gerstmayr, J., Irschik, H.: Vibrations of the elasto-plastic pendulum. Int. J. Non-Linear Mech. 38, 111–122 (2003)

    Article  MATH  Google Scholar 

  16. Dibold, M., Gerstmayr, J., Irschik, H.: Biaxial vibrations of an elasto-plastic beam with a prescribed rigid-body rotation including the effect of stiffening. Nonlinear Dyn. 34, 147–157 (2003)

    Article  MATH  Google Scholar 

  17. Ribeiro, P., van der Heijden, G.H.M.: Elasto-plastic and geometrically nonlinear vibrations of beams by the p-version finite element method. J. Sound Vib. 325, 321–337 (2009)

    Article  Google Scholar 

  18. Ribeiro, P.: Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods. Comput. Struct. 82, 1413–1423 (2004)

    Article  Google Scholar 

  19. Ribeiro, P., Petyt, M.: Non-linear vibration of beams with internal resonance by the hierarchical finite element method. J. Sound Vib. 224, 591–624 (1999)

    Article  Google Scholar 

  20. Ribeiro, P.: A p-version, first order shear deformation, finite element for geometrically non-linear vibration of curved beams. Int. J. Numer. Methods Eng. 61, 2696–2715 (2004)

    Article  MATH  Google Scholar 

  21. Chia, C.-Y.: Nonlinear Analysis of Plates. McGraw-Hill, New York (1980)

    Google Scholar 

  22. Kaneko, T.: On Timoshenko’s correction for shear in vibrating beams. J. Phys. D, Appl. Phys. 8, 1927–1936 (1975)

    Article  Google Scholar 

  23. Ribeiro, P.: Hierarchical finite element analyses of geometrically non-linear vibration of beams and plane frames. J. Sound Vib. 246, 225–244 (2001)

    Article  Google Scholar 

  24. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. National Bureau of Standarts, Washington (1972)

    MATH  Google Scholar 

  25. Bathe, K.J.: Finite Element Procedures. Prentice Hall, New York (1996)

    Google Scholar 

  26. McEwan, M.I., Wright, J.R., Cooper, J.E., Leung, A.Y.T.: A combined modal/finite element analysis technique for the dynamic response of a non-linear beam to harmonic excitation. J. Sound Vib. 243, 601–624 (2001)

    Article  Google Scholar 

  27. Seydel, R.: Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos. Springer, Berlin (1994)

    MATH  Google Scholar 

  28. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  29. Thomsen, J.J.: Vibrations and Stability. Advanced Theory, Analysis, and Tools. Springer, Berlin (2003)

    Google Scholar 

  30. Ribeiro, P.: On the influence of membrane inertia and shear deformation on the geometrically non-linear vibrations of open, cylindrical, laminated clamped shells. Compos. Sci. Technol. 69, 176–185 (2009)

    Article  Google Scholar 

  31. Ribeiro, P.: Free periodic vibrations of beams with large displacements and initial plastic strains. Int. J. Mech. Sci. 52, 1407–1418 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, P. On the predictability of elasto-plastic and geometrically non-linear oscillations of beams under harmonic excitation. Nonlinear Dyn 67, 1761–1778 (2012). https://doi.org/10.1007/s11071-011-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0104-5

Keywords

Navigation