Skip to main content

Nonlinear damping in a micromechanical oscillator

Abstract

Nonlinear elastic effects play an important role in the dynamics of microelectromechanical systems (MEMS). A Duffing oscillator is widely used as an archetypical model of mechanical resonators with nonlinear elastic behavior. In contrast, nonlinear dissipation effects in micromechanical oscillators are often overlooked. In this work, we consider a doubly clamped micromechanical beam oscillator, which exhibits nonlinearity in both elastic and dissipative properties. The dynamics of the oscillator is measured in both frequency and time domains and compared to theoretical predictions based on a Duffing-like model with nonlinear dissipation. We especially focus on the behavior of the system near bifurcation points. The results show that nonlinear dissipation can have a significant impact on the dynamics of micromechanical systems. To account for the results, we have developed a continuous model of a geometrically nonlinear beam-string with a linear Voigt–Kelvin viscoelastic constitutive law, which shows a relation between linear and nonlinear damping. However, the experimental results suggest that this model alone cannot fully account for all the experimentally observed nonlinear dissipation, and that additional nonlinear dissipative processes exist in our devices.

This is a preview of subscription content, access via your institution.

References

  1. Turner, K.L., Miller, S.A., Hartwell, P.G., MacDonald, N.C., Strogatz, S.H., Adams, S.G.: Five parametric resonances in a microelectromechanical system. Nature 396, 149–152 (1998)

    Article  Google Scholar 

  2. Roukes, M.: Nanoelectromechanical systems face the future. Phys. World 14, 25–25 (2001)

    Google Scholar 

  3. Roukes, M.: Nanomechanical systems. Technical digest of the 2000 solid state sensor and actuator workshop (2000)

  4. Husain, A., Hone, J., Postma, H.W.C., Huang, X.M.H., Drake, T., Barbic, M., Scherer, A., Roukes, M.L.: Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett. 83, 1240–1242 (2003)

    Article  Google Scholar 

  5. Sidles, J.A., Garbini, J.L., Bruland, K.J., Rugar, D., Zuger, O., Hoen, S., Yannoni, C.S.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67(1), 249–265 (1995)

    Article  Google Scholar 

  6. Rugar, D., Budakian, R., Mamin, H.J., Chui, B.W.: Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)

    Article  Google Scholar 

  7. Ekinci, K.L., Yang, Y.T., Roukes, M.L.: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J. Appl. Phys. 95(5), 2682–2689 (2004)

    Article  Google Scholar 

  8. Ekinci, K.L., Huang, X.M.H., Roukes, M.L.: Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 84(22), 4469–4471 (2004)

    Article  Google Scholar 

  9. Ilic, B., Craighead, H.G., Krylov, S., Senaratne, W., Ober, C.: Attogram detection using nanoelectromechanical oscillators. J. Appl. Phys. 95, 3694 (2004)

    Article  Google Scholar 

  10. Nayfeh, A.H., Ouakad, H.M., Najar, F., Choura, S., Abdel-Rahman, E.M.: Nonlinear dynamics of a resonant gas sensor. Nonlinear Dyn. 59(4), 607–618 (2010)

    MATH  Article  Google Scholar 

  11. Blencowe, M.: Quantum electromechanical systems. Phys. Rep. 395, 159–222 (2004)

    Article  Google Scholar 

  12. Knobel, R.G., Cleland, A.N.: Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003)

    Article  Google Scholar 

  13. LaHaye, M.D., Buu, O., Camarota, B., Schwab, K.C.: Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004)

    Article  Google Scholar 

  14. Schwab, K., Henriksen, E.A., Worlock, J.M., Roukes, M.L.: Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000)

    Article  Google Scholar 

  15. Buks, E., Roukes, M.L.: Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 63, 33402 (2001)

    Article  Google Scholar 

  16. Buks, E., Roukes, M.L.: Metastability and the Casimir effect in micromechanical systems. Europhys. Lett. 54(2), 220–226 (2001)

    Article  Google Scholar 

  17. Schwab, K.C., Roukes, M.L.: Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005)

    Article  Google Scholar 

  18. Aspelmeyer, M., Schwab, K.: Focus on mechanical systems at the quantum limit. New J. Phys. 10(9), 095001 (2008)

    Article  Google Scholar 

  19. Kozinsky, I., Postma, H.W.C., Kogan, O., Husain, A., Roukes, M.L.: Basins of attraction of a nonlinear nanomechanical resonator. Phys. Rev. Lett. 99, 207201 (2007)

    Article  Google Scholar 

  20. Cross, M.C., Zumdieck, A., Lifshitz, R., Rogers, J.L.: Synchronization by nonlinear frequency pulling. Phys. Rev. Lett. 93, 224101 (2004)

    Article  Google Scholar 

  21. Erbe, A., Krömmer, H., Kraus, A., Blick, R.H., Corso, G., Richter, K.: Mechanical mixing in nonlinear nanomechanical resonators. Appl. Phys. Lett. 77, 3102–3104 (2000)

    Article  Google Scholar 

  22. Rhoads, J.F., Shaw, S.W., Turner, K.L., Baskaran, R.: Tunable microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127, 423–431 (2005)

    Article  Google Scholar 

  23. Reichenbach, R.B., Zalalutdinov, M., Aubin, K.L., Rand, R., Houston, B.H., Parpia, J.M., Craighead, H.G.: Third-order intermodulation in a micromechanical thermal mixer. J. Micro/Nanolithogr. MEMS MOEMS 14, 1244–1252 (2005)

    Google Scholar 

  24. Almog, R., Zaitsev, S., Shtempluck, O., Buks, E.: High intermodulation gain in a micromechanical Duffing resonator. Appl. Phys. Lett. 88, 213509 (2006)

    Article  Google Scholar 

  25. Almog, R., Zaitsev, S., Shtempluck, O., Buks, E.: Noise squeezing in a nanomechanical Duffing resonator. Phys. Rev. Lett. 98, 78103 (2007)

    Article  Google Scholar 

  26. Almog, R., Zaitsev, S., Shtempluck, O., Buks, E.: Signal amplification in a nanomechanical duffing resonator via stochastic resonance. Appl. Phys. Lett. 90, 13508 (2007)

    Article  Google Scholar 

  27. Zhang, W., Baskaran, R., Turner, K.L.: Nonlinear behavior of a parametric resonance-based mass sensor. In: Proc. IMECE2002, p. 33261 Nov (2002)

    Google Scholar 

  28. Buks, E., Yurke, B.: Mass detection with nonlinear nanomechanical resonator. Phys. Rev. E 74, 46619 (2006)

    Article  Google Scholar 

  29. Cleland, A.N., Roukes, M.L.: Noise processes in nanomechanical resonators. J. Appl. Phys. 92(5), 2758–2769 (2002)

    Article  Google Scholar 

  30. Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., Rugar, D.: Quality factors in micron- and submicron-thick cantilevers. J. Micromech. Syst. 9(1), 117–125 (2000)

    Article  Google Scholar 

  31. Ono, T., Wang, D.F., Esashi, M.: Time dependence of energy dissipation in resonating silicon cantilevers in ultrahigh vacuum. Appl. Phys. Lett. 83(10), 1950–1952 (2003)

    Article  Google Scholar 

  32. Liu, X., Thompson, E., White, B. Jr, Pohl, R.: Low-temperature internal friction in metal films and in plastically deformed bulk aluminum. Phys. Rev. B 59(18), 11767–11776 (1999)

    Article  Google Scholar 

  33. Harrington, D.A., Mohanty, P., Roukes, M.L.: Energy dissipation in suspended micromechanical resonators at low temperatures. Physica B 284–288, 2145–2146 (2000)

    Article  Google Scholar 

  34. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61(8), 5600–5609 (2000)

    Article  Google Scholar 

  35. Houston, B.H., Photiadis, D.M., Marcus, M.H., Bucaro, J.A., Liu, X., Vignola, J.F.: Thermoelastic loss in microscale oscillators. Appl. Phys. Lett. 80(7), 1300–1302 (2002)

    Article  Google Scholar 

  36. Lifshitz, R.: Phonon-mediated dissipation in micro- and nano-mechanical systems. Physica B 316–317, 397–399 (2002)

    Article  Google Scholar 

  37. Wilson-Rae, I.: Intrinsic dissipation in nanomechanical resonators due to phonon tunneling. Phys. Rev. B 77, 245418 (2008)

    Article  Google Scholar 

  38. Remus, L.G., Blencowe, M.P., Tanaka, Y.: Damping and decoherence of a nanomechanical resonator due to a few two level systems. arXiv:0907.0431 [cond-mat] (2009)

  39. Popovic, P., Nayfeh, A.H., Oh, K., Nayfeh, S.A.: An experimental investigation of energy transfer from a highfrequency mode to a low-frequency mode in a flexible structure. J. Vib. Control 1(1), 115–128 (1995)

    Article  Google Scholar 

  40. Hajj, M.R., Fung, J., Nayfeh, A.H., Fahey, S.O.: Damping identification using perturbation techniques and higher-order spectra. Nonlinear Dyn. 23(2), 189–203 (2000)

    MATH  Article  Google Scholar 

  41. Jaksic, N., Boltezar, M.: An approach to parameter identification for a single-degree-of-freedom dynamical system based on short free acceleration response. J. Sound Vib. 250, 465–483 (2002)

    Article  Google Scholar 

  42. Zhang, W., Baskaran, R., Turner, K.L.: Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor. Sens. Actuators A, Phys. 102, 139–150 (2002)

    Article  Google Scholar 

  43. Zhang, W., Baskaran, R., Turner, K.: Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator. Appl. Phys. Lett. 82, 130–132 (2003)

    Article  Google Scholar 

  44. Krylov, S., Ilic, B.R., Schreiber, D., Seretensky, S., Craighead, H.: The pull-in behavior of electrostatically actuated bistable microstructures. J. Micromech. Microeng. 18(5), 055026 (2008)

    Article  Google Scholar 

  45. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995). Wiley Classics Library

    Book  Google Scholar 

  46. Dykman, M., Krivoglaz, M.: Theory of nonlinear oscillator interacting with a medium. In: Khalatnikov, I.M. (ed.) Soviet Scientific Reviews, Section A, Physics Reviews, vol. 5, pp. 265–441. Harwood Academic, Reading (1984)

    Google Scholar 

  47. Landau, L.D., Lifshitz, E.M.: Mechanics, 3rd edn. Pergamon, New York (1976)

    Google Scholar 

  48. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  49. Arnold, V.I.: Geometrical methods in the theory of ordinary differential equations, Grundlehren der mathematischen Wissenschaften, vol. 250, 2nd edn. Springer, New York (1988)

    Book  Google Scholar 

  50. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, Readings (1994)

    Google Scholar 

  51. Chan, H.B., Dykman, M., Stambaugh, C.: Paths of fluctuation induced switching. Phys. Rev. Lett. 100, 130602 (2008)

    Article  Google Scholar 

  52. Dykman, M.I., Golding, B., Ryvkine, D.: Critical exponent crossovers in escape near a bifurcation point. Phys. Rev. Lett. 92(8), 080602 (2004)

    Article  Google Scholar 

  53. Yurke, B., Buks, E.: Performance of cavity-parametric amplifiers, employing Kerr nonlinearites, in the presence of two-photon loss. J. Lightwave Technol. 24(12), 5054–5066 (2006)

    Article  Google Scholar 

  54. Buks, E., Yurke, B.: Dephasing due to intermode coupling in superconducting stripline resonators. Phys. Rev. A 73, 23815 (2006)

    Article  Google Scholar 

  55. Ravindra, B., Mallik, A.K.: Role of nonlinear dissipation in soft Duffing oscillators. Phys. Rev. E 49(6), 4950–4953 (1994)

    Article  Google Scholar 

  56. Ravindra, B., Mallik, A.K.: Stability analysis of a non-linearly damped Duffing oscillator. J. Sound Vib. 171(5), 708–716 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  57. Trueba, J.L., Rams, J., Sanjuan, M.A.F.: Analytical estimates of the effect of nonlinear damping in some nonlinear oscillators. Int. J. Bifurc. Chaos 10(9), 2257–2267 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  58. Baltanas, J.P., Trueba, J.L., Sanjuan, M.A.F.: Energy dissipation in a nonlinearly damped Duffing oscillator. Physica D 159, 22–34 (2001)

    MATH  Article  Google Scholar 

  59. Sanjuan, M.A.F.: The effect of nonlinear damping on the universal escape oscillator. Int. J. Bifurc. Chaos 9(4), 735–744 (1999)

    MATH  Article  Google Scholar 

  60. Krylov, S., Maimon, R.: Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. J. Vib. Acoust. 126, 332–343 (2004)

    Article  Google Scholar 

  61. Jing, X.J., Lang, Z.Q.: Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input. Nonlinear Dyn. 58(3), 469–485 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  62. Lifshitz, R., Cross, M.: Nonlinear dynamics of nanomechanical and micromechanical resonators. In: Schuster, H.G. (ed.) Reviews of nonlinear dynamics and complexity, vol. 1, pp. 1–48. Wiley-VCH, New York (2008)

    Chapter  Google Scholar 

  63. Gutschmidt, S., Gottlieb, O.: Internal resonances and bifurcations of a microbeam array below the first pull-in instability. Int. J. Bifurc. Chaos 20(3), 605–618 (2010)

    MATH  Article  Google Scholar 

  64. Lifshitz, R., Cross, M.C.: Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays. Phys. Rev. B 67, 134302 (2003)

    Article  Google Scholar 

  65. Bikdash, M., Balachandran, B., Nayfeh, A.: Melnikov analysis for a ship with a general roll-damping model.Nonlinear Dyn. 6, 101–124 (1994)

    Google Scholar 

  66. Gottlieb, O., Feldman, M.: Application of a Hilbert transform-based algorithm for parameter estimation of a nonlinear ocean system roll model. J. Offshore Mech. Arct. Eng. 119, 239–243 (1997)

    Article  Google Scholar 

  67. Dick, A.J., Balachandran, B., DeVoe, D.L., Mote, C.D. Jr.: Parametric identification of piezoelectric microscale resonators. J. Micromech. Microeng. 16, 1593–1601 (2006)

    Article  Google Scholar 

  68. Zhu, W.Q., Wu, Y.J.: First-passage time of duffing oscillator under combined harmonic and white-noise excitations. Nonlinear Dyn. 32(3), 291–305 (2003)

    MATH  Article  Google Scholar 

  69. Aldridge, J., Cleland, A.: Noise-enabled precision measurements of a Duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005)

    Article  Google Scholar 

  70. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlinear Dyn. 31(1), 91–117 (2003)

    MathSciNet  MATH  Article  Google Scholar 

  71. Buks, E., Roukes, M.L.: Electrically tunable collective response in a coupled micromechanical array. J. Micromech. Syst. 11(6), 802–807 (2002)

    Article  Google Scholar 

  72. Ullersma, P.: An exactly solvable model for Brownian motion: I. derivation of the Langevin equation. Physica 32, 27–55 (1966)

    MathSciNet  Article  Google Scholar 

  73. Ullersma, P.: An exactly solvable model for Brownian motion: II. derivation of the Fokker-Planck equation and the master equation. Physica 32, 56–73 (1966)

    MathSciNet  Article  Google Scholar 

  74. Caldeira, A.O., Leggett, A.J.: Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983)

    MathSciNet  MATH  Article  Google Scholar 

  75. Hänggi, P.: Generalized Langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations? In: Stochastic Dynamics. Lecture Notes in Physics, vol. 484, pp. 15–22. Springer, Berlin (1997)

    Chapter  Google Scholar 

  76. Mohanty, P., Harrington, D.A., Ekinci, K.L., Yang, Y.T., Murphy, M.J., Roukes, M.L.: Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B 66, 85416 (2002)

    Article  Google Scholar 

  77. Zener, C.: Elasticity and Anelasticity of Metals. The University of Chicago Press, Chicago (1948)

    Google Scholar 

  78. Stievater, T.H., Rabinovich, W.S., Papanicolaou, N.A., Bass, R., Boos, J.B.: Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors. Appl. Phys. Lett. 90, 051114 (2007)

    Article  Google Scholar 

  79. Ke, T.: Stress relaxation across grain boundaries in metals. Phys. Rev. 72(1), 41–46 (1947)

    Article  Google Scholar 

  80. Ono, T., Esashi, M.: Effect of ion attachment on mechanical dissipation of a resonator. Appl. Phys. Lett. 87(44105) (2005)

  81. Zolfagharkhani, G., Gaidarzhy, A., Shim, S., Badzey, R.L., Mohanty, P.: Quantum friction in nanomechanical oscillators at millikelvin temperatures. Phys. Rev. B 72, 224101 (2005)

    Article  Google Scholar 

  82. Geller, M.R., Varley, J.B.: Friction in nanoelectromechanical systems: Clamping loss in the GHz regime. arXiv:cond-mat/0512710 (2005)

  83. Cross, M., Lifshitz, R.: Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems. Phys. Rev. B 64, 85324 (2001)

    Article  Google Scholar 

  84. Hänggi, P., Ingold, G.L.: Fundamental aspects of quantum Brownian motion. Chaos 15(2), 026105 (2005)

    MathSciNet  Article  Google Scholar 

  85. Landau, L.D., Lifshitz, E.M.: Statistical Physics, Part 1, 3rd edn. Pergamon, New York (1980)

    Google Scholar 

  86. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)

    Article  Google Scholar 

  87. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943)

    MathSciNet  MATH  Article  Google Scholar 

  88. Klimontovich, Y.L.: Statistical Theory of Open Systems: Volume 1: A Unified Approach to Kinetic Description of Processes in Active Systems. Kluwer Academic, Norwell (1995)

    MATH  Google Scholar 

  89. Habib, S., Kandrup, H.: Nonlinear noise in cosmology. Phys. Rev. D 46, 5303–5314 (1992)

    MathSciNet  Article  Google Scholar 

  90. Yurke, B., Greywall, D.S., Pargellis, A.N., Busch, P.A.: Theory of amplifier-noise evasion in an oscillator employing nonlinear resonator. Phys. Rev. A 51(5), 4211–4229 (1995)

    Article  Google Scholar 

  91. Rugar, D., Grüetter, P.: Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699–702 (1991)

    Article  Google Scholar 

  92. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    MathSciNet  MATH  Article  Google Scholar 

  93. Hänggi, P., Talkner, P., Borkovec, M.: Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–342 (1990)

    Article  Google Scholar 

  94. Kogan, O.: Controlling transitions in a Duffing oscillator by sweeping parameters in time. Phys. Rev. E 76, 037203 (2007)

    Article  Google Scholar 

  95. Leamy, M.J., Gottlieb, O.: Internal resonances in whirling strings involving longitudinal dynamics and material non-linearities. J. Sound Vib. 236, 683–703 (2000)

    Article  Google Scholar 

  96. Leamy, M.J., Gottlieb, O.: Nonlinear dynamics of a taut string with material nonlinearities. J. Vib. Acoust. 123, 53–60 (2001)

    Article  Google Scholar 

  97. Meirovitch, L.: Principles and Techniques of Vibrations. Prentice-Hall, New York (1997)

    Google Scholar 

  98. Mintz, T.: Nonlinear dynamics and stability of a microbeam array subject to parametric excitation. Master’s thesis, Technion – Israel Institute of Technology (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stav Zaitsev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zaitsev, S., Shtempluck, O., Buks, E. et al. Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn 67, 859–883 (2012). https://doi.org/10.1007/s11071-011-0031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0031-5

Keywords

  • MEMS
  • Duffing oscillator
  • Nonlinear damping
  • Saddle-node bifurcation
  • Parameter identification
  • Forced vibration