Skip to main content
Log in

Complexity of chaotic binary sequence and precision of its numerical simulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Numerical simulation is one of primary methods in which people study the property of chaotic systems. However, there is the effect of finite precision in all processors which can cause chaos to degenerate into a periodic function or a fixed point. If it is neglected the precision of a computer processor for the binary numerical calculations, the numerical simulation results may not be accurate due to the chaotic nature of the system under study. New and more accurate methods must be found. A quantitative computable method of sequence complexity evaluation is introduced in this paper. The effect of finite precision is evaluated from the viewpoint of sequence complexity. The simulation results show that the correlation function based on information entropy can effectively reflect the complexity of pseudorandom sequences generated by a chaotic system, and it is superior to the other measure methods based on entropy. The finite calculation precision of the processor has significant effect on the complexity of chaotic binary sequences generated by the Lorenz equation. The pseudorandom binary sequences with high complexity can be generated by a chaotic system as long as the suitable computational precision and quantification algorithm are selected and behave correctly. The new methodology helps to gain insight into systems that may exist in various application domains such as secure communications and spectrum management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 71(1), 130–141 (1963)

    Article  Google Scholar 

  2. Du, L.Q., Yu, Y.W., Tang, Q.L.: Design of high precision weight measurement system based on chaotic circuit. Chin. J. Sci. Instrum. 30(6), 1202–1206 (2009)

    Google Scholar 

  3. Shevchenko, I.I.: On the maximum Lyapunov exponent of the motion in a chaotic layer. JETP Lett. 79(11), 523–528 (2004)

    Article  Google Scholar 

  4. Allen, E., Burns, J., Gilliam, D., Hill, J., Shubov, V.: The impact of finite precision arithmetic and sensitivity on the numerical solution of partial differential equations. Math. Comput. Model. 35(11–12), 1165–1195 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nagaraj, N., Shastry, M.C., Vaidya, P.G.: Increasing average period lengths by switching of robust chaos maps in finite precision. Eur. Phys. J. Spec. Top. 165, 73–83 (2008)

    Article  Google Scholar 

  6. Li, S.J., Mou, X.Q., Cai, Y.L., Ji, Z., Zhang, J.H.: On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision. Comput. Phys. Commun. 153, 52–58 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nishikawa, T., Toroczkai, Z., Grebogi, C., Tél, T.: Finite-size effects on active chaotic advection. Phys. Rev. E 65, 026216 (2002)

    Article  Google Scholar 

  8. Zhou, C.S., Chen, T.L.: Robust and secure method for transmitting binary message using binary chaotic sequence. Commun. Theor. Phys. 29(4), 543–546 (1998)

    Google Scholar 

  9. Curiac, D.I., Iercan, D., Dranga, O., Dragan, F., Banias, O.: Chaos-based cryptography: end of the road. In: International Conference on Emerging Security Information, Systems and Technologies, pp. 71–76, Valencia, Spain (2007)

    Google Scholar 

  10. Li, Z., Cai, J.P., Chang, Y.L.: Determining the complexity of FH/SS sequence by approximate entropy. IEEE Trans. Commun. 57(3), 812–820 (2009)

    Article  Google Scholar 

  11. Huepe, C., Riecke, H., Daniels, K.E., Bodenschatz, E.: Statistics of defect trajectories in spatio-temporal chaos in inclined layer convection and the complex Ginzburg–Landau equation. Chaos 14(3), 864–874 (2004)

    Article  Google Scholar 

  12. Cai, J.P., Li, Z., Song, W.T.: Analysis on the chaotic pseudorandom sequence complexity. Acta Phys. Sin. 52(8), 1871–1876 (2003)

    Google Scholar 

  13. Xiao, F.H., Yan, G.R., Han, Y.H.: A symbolic dynamics approach for the complexity analysis of chaotic pseudorandom sequences. Acta Phys. Sin. 53(9), 2877–2880 (2004)

    Google Scholar 

  14. Larrondo, H.A., González, C.M., Martin, M.T., Plastino, A., Rosso, O.A.: Intensive statistical complexity measure of pseudorandom number generators. Physica A 356, 133–138 (2005)

    Article  Google Scholar 

  15. Evans, S., Bush, S.F., John, H.: Information assurance through Kolmogorov complexity. In: DARPA Information Survivability Conference & Exposition, Anaheim, pp. 322–330 (2001)

    Chapter  Google Scholar 

  16. Staiger, L.: The Kolmogorov complexity of real number. J. Theor. Comput. Sci. 284, 455–466 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raju, B.V.S.S.N., Rao, K.D.: Robust multiuser detection in synchronous chaotic modulation systems. IETE J. Res. 55(2), 54–62 (2009)

    Article  Google Scholar 

  18. Jiang, N., Liu, X.D., Zhao, J.Y., Bao, S.Z.: The stream cipher algorithm based on chaotic dynamical system. J. Inf. Comput. Sci. 6(2), 993–999 (2009)

    Google Scholar 

  19. Yang, H.Q., Liao, X.F., Wong, K.W., Zhang, W., Wei, P.C.: A new cryptosystem based on chaotic map and operations algebraic. Chaos Solitons Fractals 40(5), 2520–2531 (2009)

    Article  MathSciNet  Google Scholar 

  20. Lau, F.C.M., Ye, M., Tse, C.K., Hau, S.F.: Anti-jamming performance of chaotic digital communication system. IEEE Trans. Circuits Syst. I, Regul. Pap. 49(10), 1486–1494 (2002)

    Article  Google Scholar 

  21. Gong, X.F., Wang, X.G., Zhan, M.: Chaotic digital communication by encoding initial conditions. Chaos 14(2), 358–363 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kohda, T., Tsuneda, A.: Statistics of chaotic binary sequences. IEEE Trans. Inf. Theory 43(1), 104–112 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, S.J., Li, Q., Li, W.M., Mou, X.Q., Cai, Y.L.: Statistical Properties of Digital Piecewise Linear Chaotic Maps and Their Roles in Cryptography and Pseudo-Random Coding. In: Lecture Notes in Computer Science, vol. 2260, pp. 205–221. Springer, Berlin (2001)

    Google Scholar 

  24. Shi, P.L.: A relation on round-off error, attractor size and its dynamics in driven or coupled logistic map system. Chaos 18(1), 13122 (2008)

    Article  Google Scholar 

  25. Bennett, C.H., Gács, P., Li, M., Vitanyi, P.M.B., Zurek, W.H.: Information distance. IEEE Trans. Inf. Theory 44(4), 1407–1423 (1998)

    Article  MATH  Google Scholar 

  26. Schuster, H.G., Just, W.: Deterministic Chaos: An Introduction, pp. 19–33. Wiley-VCH Press, Weinheim (2005)

    Book  MATH  Google Scholar 

  27. Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S.: A survey on spectrum management in cognitive radio networks. IEEE Commun. Mag. 46(4), 40–48 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niansheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Guo, D. & Parr, G. Complexity of chaotic binary sequence and precision of its numerical simulation. Nonlinear Dyn 67, 549–556 (2012). https://doi.org/10.1007/s11071-011-0005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-011-0005-7

Keywords

Navigation