Skip to main content
Log in

Mathematical modeling and experimental investigation of an embedded vibro-impact system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The subject of this work is the experimental investigation and the mathematical modeling of the impact force behavior in a vibro-impact system, where a hammer is mounted on a cart that imposes a prescribed displacement. By changing the hammer stiffness and the impact gap it is possible to investigate the impact force behavior under different excitation frequencies. The experimental data will be used to validate the mathematical model. The hammer behavior is studied in more detail using a nonlinear analysis, which shows the various responses of the hammer, such as dynamical jumps, bifurcations and chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Chen, S.: Linear and nonlinear dynamics of drillstrings. Ph.D. thesis, Faculté des Sciences Appliquées, Université de Liège, Liège, Belgium (1995)

  2. Dareing, D.W., Deily, F.H., Paff, G.H., Ortloff, J.E., Lynn, R.D.: Downhole measurements of drill string forces and motions. ASME J. Eng. Ind. May, pp. 217–225 (1968)

  3. Dykstra, M.W.: Nonlinear drillstring dynamics. Ph.D. thesis, Department of Petroleum Engineering, University of Tulsa, Oklahoma, USA (1996)

  4. Cunningham, R.A.: Analysis of downhole measurements of drill string forces and motions. ASME J. Eng. Ind. May, pp. 208–216 (1968)

  5. Batako, A.D., Babitsky, V.I., Halliwell, N.A.: A self-excited system for percussive-rotary drilling. J. Sound Vib. 259, 97–118 (2003)

    Article  Google Scholar 

  6. Batako, A.D., Babitsky, V.I., Halliwell, N.A.: Modelling of vibro-impact penetration of self-exciting percussive-rotary drill bit. J. Sound Vib. 271, 209–225 (2004)

    Article  Google Scholar 

  7. Franca, L.F.P., Weber, H.I.: Experimental and numerical study of a new resonance hammer drilling model with drift. Chaos Solitons Fractals 21, 789–801 (2004)

    Article  MATH  Google Scholar 

  8. Wiercigroch, M., Neilson, R.D., Player, M.A.: Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Phys. Lett. A 259, 91–96 (1999)

    Article  Google Scholar 

  9. Babitsky, V.I., Kalashnikov, A.N., Meadowsa, A., Wijesundara, A.A.H.P.: Ultrasonically assisted turning of aviation materials. J. Mater. Process. Technol. 132, 157–167 (2003)

    Article  Google Scholar 

  10. Wiercigroch, M., Wojewodab, J., Krivtsov, A.M.: Dynamics of ultrasonic percussive drilling of hard rocks. J. Sound Vib. 280, 739–757 (2005)

    Article  Google Scholar 

  11. Asfar, K.R., Akour, S.N.: Optimization analysis of impact viscous damper for controlling self-excited vibration. J. Vib. Control 11(1), 103–120 (2005)

    Article  MATH  Google Scholar 

  12. Peterka, F.: More detail view on the dynamics of the impact damper. Facta Univ. Ser. Mech. Automat. Control Robot. 3(14), 907–920 (2003)

    MATH  Google Scholar 

  13. Babitsky, V.I.: Hand-held percussion machine as discrete non-linear converter. J. Sound Vib. 214, 165–182 (1998)

    Article  Google Scholar 

  14. Babitsky, V.I., Krupenin, V.L.: Vibration of Strongly Nonlinear Discontinuous Systems. Springer, Berlin (2001)

    MATH  Google Scholar 

  15. Mattos, M.C., Weber, H.I.: Some interesting characteristics of a simple autonomous impact system with symmetric clearance. In: ASME—Design Engineering Conference, CD-ROM, 5 pp. (1997)

    Google Scholar 

  16. Inman, D.J.: Engineering Vibration. Prentice Hall, New York (1996)

    Google Scholar 

  17. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, Berlin (2004)

    MATH  Google Scholar 

  19. Leine, R.I., van Campen, D.H., van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23(2), 105–164 (2000)

    Article  MATH  Google Scholar 

  20. Divenyi, S., Savi, M.A., Franca, L.F.P., Weber, H.I.: Nonlinear dynamics and chaos in systems with discontinuous support. Shock Vib. 13, 315–326 (2006)

    Google Scholar 

  21. Divenyi, S., Savi, M.A., Franca, L.F.P., Weber, H.I.: Numerical and experimental investigations of the nonlinear dynamics and chaos in non-smooth systems. J. Sound Vib. 301, 59–73 (2007)

    Article  Google Scholar 

  22. Peterka, F., Kotera, T., Cipera, S.: Explanation of appearance and characteristics of intermittency chaos of the impact oscillator. Chaos Solitons Fractals 19, 1251–1259 (2004)

    Article  MATH  Google Scholar 

  23. Peterka, F.: More detailed view on the dynamics of the impact damper. Facta Univ. Ser. Mech. Automat. Control Robot. 3(14), 907–920 (2003)

    MATH  Google Scholar 

  24. Peterka, F., Blazejczyk-Okolewska, B.: An investigation of the dynamic system with impacts. Chaos Solitons Fractals 9(8), 1321–1338 (1998)

    Article  MATH  Google Scholar 

  25. Peterka, F.: Bifurcations and transition phenomena in an impact oscillator. Chaos Solitons Fractals 7(10), 1635–1647 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Boulder (2000)

    Google Scholar 

  27. Shaw, S.W.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 99, 199–212 (1985)

    Article  Google Scholar 

  28. Shaw, S.W., Holmes, P.J.: Periodically forced linear oscillator with impacts—chaos and long-period motions. Phys. Rev. Lett. 51, 623–626 (1983)

    Article  MathSciNet  Google Scholar 

  29. Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.: Experimental study of impact oscillator with one-sided elastic constraint. Philos. Trans. R. Soc. A 366, 679–704 (2008)

    Article  MATH  Google Scholar 

  30. Thompson, J.M.T., Bokaian, A.R., Ghaffari, R.: Subharmonic resonances and chaotic motions of a bilinear oscillator. J. Appl. Math. 31, 207–234 (1983)

    MathSciNet  MATH  Google Scholar 

  31. Piiroinen, P.T., Virgin, L.N., Champneys, A.R.: Chaos and period adding: Experimental and numerical verification of the grazing bifurcation. J. Nonlinear Sci. 14, 383–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hinrichs, N., Oestreich, M., Popp, K.: Dynamics of oscillators with impact and friction. Chaos Solitons Fractals 8, 535–558 (1997)

    Article  MATH  Google Scholar 

  33. Todd, M.D., Virgin, L.N.: An experimental impact oscillator. Chaos Solitons Fractals 8, 699–715 (1997)

    Article  MATH  Google Scholar 

  34. Aguiar, R.R.: Experimental investigation and numerical analysis of the vibro-impact phenomenon. D.Sc. thesis, Departamento de Engenharia Mecânica, PUC-Rio, Rio de Janeiro, Brazil (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Aguiar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguiar, R.R., Weber, H.I. Mathematical modeling and experimental investigation of an embedded vibro-impact system. Nonlinear Dyn 65, 317–334 (2011). https://doi.org/10.1007/s11071-010-9894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9894-0

Keywords

Navigation