Abstract
The subject of this work is the experimental investigation and the mathematical modeling of the impact force behavior in a vibro-impact system, where a hammer is mounted on a cart that imposes a prescribed displacement. By changing the hammer stiffness and the impact gap it is possible to investigate the impact force behavior under different excitation frequencies. The experimental data will be used to validate the mathematical model. The hammer behavior is studied in more detail using a nonlinear analysis, which shows the various responses of the hammer, such as dynamical jumps, bifurcations and chaos.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Chen, S.: Linear and nonlinear dynamics of drillstrings. Ph.D. thesis, Faculté des Sciences Appliquées, Université de Liège, Liège, Belgium (1995)
Dareing, D.W., Deily, F.H., Paff, G.H., Ortloff, J.E., Lynn, R.D.: Downhole measurements of drill string forces and motions. ASME J. Eng. Ind. May, pp. 217–225 (1968)
Dykstra, M.W.: Nonlinear drillstring dynamics. Ph.D. thesis, Department of Petroleum Engineering, University of Tulsa, Oklahoma, USA (1996)
Cunningham, R.A.: Analysis of downhole measurements of drill string forces and motions. ASME J. Eng. Ind. May, pp. 208–216 (1968)
Batako, A.D., Babitsky, V.I., Halliwell, N.A.: A self-excited system for percussive-rotary drilling. J. Sound Vib. 259, 97–118 (2003)
Batako, A.D., Babitsky, V.I., Halliwell, N.A.: Modelling of vibro-impact penetration of self-exciting percussive-rotary drill bit. J. Sound Vib. 271, 209–225 (2004)
Franca, L.F.P., Weber, H.I.: Experimental and numerical study of a new resonance hammer drilling model with drift. Chaos Solitons Fractals 21, 789–801 (2004)
Wiercigroch, M., Neilson, R.D., Player, M.A.: Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach. Phys. Lett. A 259, 91–96 (1999)
Babitsky, V.I., Kalashnikov, A.N., Meadowsa, A., Wijesundara, A.A.H.P.: Ultrasonically assisted turning of aviation materials. J. Mater. Process. Technol. 132, 157–167 (2003)
Wiercigroch, M., Wojewodab, J., Krivtsov, A.M.: Dynamics of ultrasonic percussive drilling of hard rocks. J. Sound Vib. 280, 739–757 (2005)
Asfar, K.R., Akour, S.N.: Optimization analysis of impact viscous damper for controlling self-excited vibration. J. Vib. Control 11(1), 103–120 (2005)
Peterka, F.: More detail view on the dynamics of the impact damper. Facta Univ. Ser. Mech. Automat. Control Robot. 3(14), 907–920 (2003)
Babitsky, V.I.: Hand-held percussion machine as discrete non-linear converter. J. Sound Vib. 214, 165–182 (1998)
Babitsky, V.I., Krupenin, V.L.: Vibration of Strongly Nonlinear Discontinuous Systems. Springer, Berlin (2001)
Mattos, M.C., Weber, H.I.: Some interesting characteristics of a simple autonomous impact system with symmetric clearance. In: ASME—Design Engineering Conference, CD-ROM, 5 pp. (1997)
Inman, D.J.: Engineering Vibration. Prentice Hall, New York (1996)
Gilardi, G., Sharf, I.: Literature survey of contact dynamics modelling. Mech. Mach. Theory 37, 1213–1239 (2002)
Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, Berlin (2004)
Leine, R.I., van Campen, D.H., van de Vrande, B.L.: Bifurcations in nonlinear discontinuous systems. Nonlinear Dyn. 23(2), 105–164 (2000)
Divenyi, S., Savi, M.A., Franca, L.F.P., Weber, H.I.: Nonlinear dynamics and chaos in systems with discontinuous support. Shock Vib. 13, 315–326 (2006)
Divenyi, S., Savi, M.A., Franca, L.F.P., Weber, H.I.: Numerical and experimental investigations of the nonlinear dynamics and chaos in non-smooth systems. J. Sound Vib. 301, 59–73 (2007)
Peterka, F., Kotera, T., Cipera, S.: Explanation of appearance and characteristics of intermittency chaos of the impact oscillator. Chaos Solitons Fractals 19, 1251–1259 (2004)
Peterka, F.: More detailed view on the dynamics of the impact damper. Facta Univ. Ser. Mech. Automat. Control Robot. 3(14), 907–920 (2003)
Peterka, F., Blazejczyk-Okolewska, B.: An investigation of the dynamic system with impacts. Chaos Solitons Fractals 9(8), 1321–1338 (1998)
Peterka, F.: Bifurcations and transition phenomena in an impact oscillator. Chaos Solitons Fractals 7(10), 1635–1647 (1996)
Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Boulder (2000)
Shaw, S.W.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 99, 199–212 (1985)
Shaw, S.W., Holmes, P.J.: Periodically forced linear oscillator with impacts—chaos and long-period motions. Phys. Rev. Lett. 51, 623–626 (1983)
Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.: Experimental study of impact oscillator with one-sided elastic constraint. Philos. Trans. R. Soc. A 366, 679–704 (2008)
Thompson, J.M.T., Bokaian, A.R., Ghaffari, R.: Subharmonic resonances and chaotic motions of a bilinear oscillator. J. Appl. Math. 31, 207–234 (1983)
Piiroinen, P.T., Virgin, L.N., Champneys, A.R.: Chaos and period adding: Experimental and numerical verification of the grazing bifurcation. J. Nonlinear Sci. 14, 383–404 (2004)
Hinrichs, N., Oestreich, M., Popp, K.: Dynamics of oscillators with impact and friction. Chaos Solitons Fractals 8, 535–558 (1997)
Todd, M.D., Virgin, L.N.: An experimental impact oscillator. Chaos Solitons Fractals 8, 699–715 (1997)
Aguiar, R.R.: Experimental investigation and numerical analysis of the vibro-impact phenomenon. D.Sc. thesis, Departamento de Engenharia Mecânica, PUC-Rio, Rio de Janeiro, Brazil (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aguiar, R.R., Weber, H.I. Mathematical modeling and experimental investigation of an embedded vibro-impact system. Nonlinear Dyn 65, 317–334 (2011). https://doi.org/10.1007/s11071-010-9894-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-010-9894-0