Skip to main content
Log in

Nonlinear analysis of spacecraft thermal models

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the differential equations of lumped-parameter models of spacecraft thermal control. Firstly, we consider a satellite model consisting of two isothermal parts (nodes): an outer part that absorbs heat from the environment as radiation of various types and radiates heat as a black body, and an inner part that just dissipates heat at a constant rate. The resulting system of two nonlinear ordinary differential equations for the satellite’s temperatures is analyzed with various methods, which prove that the temperatures approach a steady state if the heat input is constant, whereas they approach a limit cycle if it varies periodically. Secondly, we generalize those methods to study a many-node thermal model of a spacecraft: this model also has a stable steady state under constant heat inputs that becomes a limit cycle if the inputs vary periodically. Finally, we propose new numerical analyses of spacecraft thermal models based on our results, to complement the analyses normally carried out with commercial software packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreith, F.: Radiation Heat Transfer for Spacecraft and Solar Power Plant Design. International Textbook Co., Scranton (1962)

    Google Scholar 

  2. Wingate, C.A.: Spacecraft thermal control. In: Pisacane, V.L., Moore, R.G. (eds.) Fundamentals of Space Systems. Oxford University Press, London (1994)

    Google Scholar 

  3. Henderson, R.A.: Thermal control of spacecraft. In: Fortescue, P., Stark, J. (ed.) Spacecraft Systems Engineering, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  4. Gilmore, G. (ed.): Spacecraft Thermal Control Handbook. The Aerospace Press, El Segundo (2002)

    Google Scholar 

  5. Savage, C.J.: Thermal control of spacecraft. In: Fortescue, P., Stark, J., Swinerd, G. (eds.) Spacecraft Systems Engineering, 3rd edn. Wiley, New York (2003)

    Google Scholar 

  6. Oshima, K., Oshima, Y.: An analytical approach to the thermal design of spacecrafts. Rep. No. 419, Inst. of Space and Aeronautical Science of Tokyo (1968)

  7. Arduini, C., Laneve, G., Folco, S.: Linearized techniques for solving the inverse problem in the satellite thermal control. Acta Astronaut. 43, 473–479 (1998)

    Article  Google Scholar 

  8. Tsai, J.-R.: Overview of satellite thermal analytical model. J. Spacecr. Rockets 41, 120–125 (2004)

    Article  Google Scholar 

  9. Gadalla, M.A.: Prediction of temperature variation in a rotating spacecraft in space environment. Appl. Therm. Eng. 25, 2379–2397 (2005)

    Article  Google Scholar 

  10. Pérez-Grande, I., Sanz-Andrés, A., Guerra, C., Alonso, G.: Analytical study of the thermal behaviour and stability of a small satellite. Appl. Therm. Eng. 29, 2567–2573 (2009)

    Article  Google Scholar 

  11. Gaite, J., Sanz-Andrés, A., Pérez-Grande, I.: Nonlinear analysis of a simple model of temperature evolution in a satellite. Nonlinear Dyn. 58, 405–415 (2009)

    Article  MATH  Google Scholar 

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    MATH  Google Scholar 

  13. Drazin, P.G.: Nonlinear Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  14. Tignol, J.-P.: Galois’ Theory of Algebraic Equations. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  15. Hymers, J.: A Treatise on the Theory of Algebraical Equations. Cambridge University Press, Cambridge (1858)

    Google Scholar 

  16. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985)

    MATH  Google Scholar 

  17. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley Classics Library. Wiley, New York (1979)

    MATH  Google Scholar 

  18. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators. Dover, New York (1987)

    Google Scholar 

  19. Hurewicz, W.: Lectures on Ordinary Differential Equations. Massachusetts Inst. Technol., Cambridge (1958)

    MATH  Google Scholar 

  20. Nayfeh, A.H.: Perturbation Methods. Wiley Classics Library. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  21. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied Mathematics. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  22. ESATAN-TMS Thermal Engineering Manual. Prepared by ITP Engines UK Ltd., Whetstone, Leicester, UK (2009)

  23. Shafarevich, I.: Basic Algebraic Geometry. Springer, Berlin (1974)

    MATH  Google Scholar 

  24. Arnold, V.I.: Ordinary Differential Equations. MIT Press, Cambridge (1973)

    MATH  Google Scholar 

  25. Hazewinkel, M.: Poincaré-Hopf theorem. In: The Encyclopedia of Mathematics. Springer, Berlin (2002). Available online at http://eom.springer.de/p/p110160.htm

    Google Scholar 

  26. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Gaite.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaite, J. Nonlinear analysis of spacecraft thermal models. Nonlinear Dyn 65, 283–300 (2011). https://doi.org/10.1007/s11071-010-9890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9890-4

Keywords

Navigation