Skip to main content
Log in

Chaotic ant swarm for the traveling salesman problem

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Chaotic ant swarm (CAS) is an optimization algorithm based on swarm intelligence theory, which has been applied to find the global optimum solution in continuous search space. However, it is not able to solve the combinational optimization problem directly, e.g., the traveling salesman problem (TSP). To tackle this problem, we propose a new method to solve the traveling salesman problem based on chaotic ant swarm, CAS-TSP for short. The CAS-TSP is developed by introducing a mapping from continuous space to discrete space, reverse operator and crossover operator into the CAS. Computer simulations demonstrate that the CAS-TSP is capable of generating optimal solution to instances of the TSPLIB in almost all test problems of sizes up to 150. Also a comparative computational study shows that this CAS-TSP algorithm is an efficient tool for solving TSP and this heuristic is competitive also with other heuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Springer, Berlin (1994)

    Google Scholar 

  2. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling salesman problems. Doc. Math., Proc. Int. Cogr. Math. 3, 645–656 (1998)

    Google Scholar 

  3. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in local optimization. In: Aarts, E., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization. Wiley, New York (1997)

    Google Scholar 

  4. Padberg, M., Rinaldi, G.: Optimization of a 532-city symmetric genetic traveling salesman problem by branch and cut. Oper. Res. Lett. 6, 1–7 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Knox, J.: Tabu search performance on the symmetric traveling salesman problem. Comput. Oper. Res. 21, 867–876 (1994)

    Article  MATH  Google Scholar 

  6. Tsubakitani, S., Evans, J.: Optimizing tabu list size for the traveling salesman problem. Comput. Oper. Res. 25, 91–97 (1998)

    Article  MATH  Google Scholar 

  7. Kirkpatrick, S., Gelatt, C.D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  8. Chatterjee, S., Carrera, C., Lynch, L.: Genetic algorithms and traveling salesman problems. Eur. J. Oper. Res. 93, 490–510 (1996)

    Article  MATH  Google Scholar 

  9. Poon, P., Carter, J.: Genetic algorithm crossover operations for ordering applications. Comput. Oper. Res. 22, 135–147 (1995)

    Article  MATH  Google Scholar 

  10. Potvin, J.Y.: Genetic algorithm for the traveling salesman problem. Ann. Oper. Res. 63, 339–370 (1996)

    Article  MATH  Google Scholar 

  11. Schmitt, L., Amini, M.: Performance characteristics of alternative genetic algorithmic approaches to the traveling salesman problem using path representation: an empirical study. Eur. J. Oper. Res. 108, 551–570 (1998)

    Article  MATH  Google Scholar 

  12. Burke, L.I.: Neural methods for the traveling salesman problem: insights from operations research. Neural Netw. 7, 681–690 (1994)

    Article  MATH  Google Scholar 

  13. Looi, C.K.: Neural network methods in combinatorial optimization. Comput. Oper. Res. 19, 191–208 (1992)

    Article  MATH  Google Scholar 

  14. Smith, K., Palaniswami, M., Krishnamoorthy, M.: Neural techniques for combinatorial optimization with applications. IEEE Trans. Neural Netw. 9, 1301–1318 (1998)

    Article  Google Scholar 

  15. Smith, K.: Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. Comput. 11, 15–34 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  17. Dorigo, M., Caro, G.: Ant algorithms for discrete optimization. Artif. Life 5, 137–172 (1999)

    Article  Google Scholar 

  18. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)

    Article  Google Scholar 

  19. Hendtlass, T.: Preserving diversity in particle swarm optimization. In: Lecture Notes in Computer Science, vol. 2718, pp. 4104–4108 (2003)

    Google Scholar 

  20. Wang, K., Huang, L., Zhou, C., Pang, W.: Particle swarm optimization for traveling salesman problem. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, China, vol. 3, pp. 1583–1585. IEEE Press, New York (2003)

    Google Scholar 

  21. Shi, X., Liang, Y., Lee, H.P., Lu, C., Wang, Q.: Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103, 169–176 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, L., Peng, H., Wang, X., Yang, Y.: An optimization method inspired by chaotic ant behavior. Int. J. Bifurc. Chaos 16, 2351–2364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peng, H., Li, L., Yang, Y., Liu, F.: Parameter estimation of dynamical systems via chaotic ant swarm. Phys. Rev. E 81, 016207 (2010)

    Article  Google Scholar 

  24. Li, L., Yang, Y., Peng, H.: Fuzzy system identification via chaotic ant swarm. Chaos Solutions Fractals 41, 401–409 (2009)

    Article  MATH  Google Scholar 

  25. Li, Y., Wen, Q., Li, L., Peng, H.: Hybrid chaotic ant swarm optimization. Chaos Solitons Fractals 42, 880–889 (2009)

    Article  Google Scholar 

  26. Cai, J., Ma, X., Li, L., Yang, Y., Peng, H., Wang, X.: Chaotic ant swarm optimization to economic dispatch. Electr. Power Syst. Res. 77, 1373–1380 (2007)

    Article  Google Scholar 

  27. Wan, M., Li, L., Xiao, J., Yang, Y., Wang, C., Guo, X: CAS based clustering algorithm for web users. Nonlinear Dyn. 61, 347–361 (2010)

    Article  MATH  Google Scholar 

  28. TSPLIB95: http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/

  29. Pataki, G.: Teaching integer programming formulations using the traveling salesman problem. Society for Industrial and. Appl. Math. 45, 116–123 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Chen, L., Aihara, K.: Chaotic simulated annealing by a neural network model with transient chaos. Neural Netw. 8, 915–930 (1995)

    Article  Google Scholar 

  31. Guo, T., Michalewicz, Z.: Inver-Over operator for the TSP. In: Proceedings of the 5th Parallel Problem Solving from Nature, vol. 1498, pp. 803–812. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  32. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the traveling salesman problem. In: Proceedings of the Second International Conference on Genetic Algorithms on Genetic Algorithms and Their Application, MA, pp. 224–230. Erlbaum, Hillsdale (1987)

    Google Scholar 

  33. Hendtlass, T.: Preserving diversity in particle swarm optimization. In: Lecture Notes in Computer Science, vol. 2718, pp. 4104–4108. Springer, Berlin (2003)

    Google Scholar 

  34. Wang, K.P., Huang, L., Zhou, C.G., Pang, W.: Particle swarm optimization for traveling salesman problem. In: International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1583–1585 (2003)

    Google Scholar 

  35. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangzhen Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Z., Ge, F., Lu, Y. et al. Chaotic ant swarm for the traveling salesman problem. Nonlinear Dyn 65, 271–281 (2011). https://doi.org/10.1007/s11071-010-9889-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9889-x

Keywords

Navigation