Skip to main content
Log in

Approximate analytic solutions to non-symmetric stance trajectories of the passive Spring-Loaded Inverted Pendulum with damping

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces an accurate yet analytically simple approximation to the stance dynamics of the Spring-Loaded Inverted Pendulum (SLIP) model in the presence of non-negligible damping and non-symmetric stance trajectories. Since the SLIP model has long been established as an accurate descriptive model for running behaviors, its careful analysis is instrumental in the design of successful locomotion controllers. Unfortunately, none of the existing analytic methods in the literature explicitly take damping into account, resulting in degraded predictive accuracy when they are used for dissipative runners. We show that the methods we propose not only yield average predictive errors below 2% in the presence of significant damping, but also outperform existing alternatives to approximate the trajectories of a lossless model. Finally, we exploit both the predictive performance and analytic simplicity of our approximations in the design of a gait-level running controller, demonstrating their practical utility and performance benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ahmadi, M., Buehler, M.: Controlled passive dynamic running experiments with the ARL-monopod II. IEEE Trans. Robot. 22(5), 974–986 (2006)

    Article  Google Scholar 

  2. Alexander, R.M.: Three uses for springs in legged locomotion. Int. J. Robot. Res. 9(2), 53–61 (1990)

    Article  Google Scholar 

  3. Alexander, R.M., Jayes, A.S.: Vertical movement in walking and running. J. Zoology, Lond. 185, 27–40 (1978)

    Article  Google Scholar 

  4. Altendorfer, R., Koditschek, D.E., Holmes, P.: Stability analysis of legged locomotion models by symmetry-factored return maps. Int. J. Robot. Res. 23(10–11), 979–999 (2004)

    Article  Google Scholar 

  5. Arampatzis, A., Briggemann, G.-P., Metzler, V.: The effect of speed on leg stiffness and joint kinematics in human running. J. Biomech. 32, 1349–1353 (1999)

    Article  Google Scholar 

  6. Arslan, O.: Model based methods for the control and planning of running robots. M.Sc., Bilkent Univ., Ankara, Turkey, July (2009)

  7. Arslan, O., Saranli, U., Morgul, O.: Reactive footstep planning for a planar spring-mass hopper. In: Proceedings of the International Conference on Intelligent Robots and Systems, St. Louis, MO, October (2009)

  8. Blickhan, R., Full, R.J.: Similarity in multilegged locomotion: bouncing like a monopode. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 173(5), 509–517 (1993)

    Google Scholar 

  9. Carver, S.: Control of a spring-mass hopper. Ph.D., Cornell University, January (2003)

  10. Cham, J.G., Karpick, J.K., Cutkosky, M.R.: Stride period adaptation of a biomimetic running hexapod. Int. J. Robot. Res. 23(2), 141–153 (2004)

    Article  Google Scholar 

  11. Diamond, J.: Why animals run on legs, not on wheels. Discover 4(9), 64–67 (1983)

    MathSciNet  Google Scholar 

  12. Farley, C.T., Ferris, D.P.: Biomechanics of walking and running: center of mass movements to muscle action. Exerc. Sport Sci. Rev. 26, 253–283 (1998)

    Article  Google Scholar 

  13. Full, R.J., Koditschek, D.E.: Templates and anchors: neuromechanical hypotheses of legged locomotion. J. Exp. Biol. 202, 3325–3332 (1999)

    Google Scholar 

  14. Geyer, H., Seyfarth, A., Blickhan, R.: Spring-mass running: simple approximate solution and application to gait stability. J. Theor. Biol. 232(3), 315–328 (2005)

    MathSciNet  Google Scholar 

  15. Gregorio, P., Ahmadi, M., Buehler, M.: Design, control, and energetics of an electrically actuated legged robot. IEEE Trans. Syst. Man Cybern. 27(4), 626–634 (1997)

    Article  Google Scholar 

  16. Grimmer, S., Ernst, M., Gunther, M., Blickhan, R.: Running on uneven ground: leg adjustment to vertical steps and self-stability. J. Exp. Biol. 211(18), 2989–3000 (2008)

    Article  Google Scholar 

  17. Holmes, P.: Poincaré, celestial mechanics, dynamical-systems theory and “chaos”. Phys. Rep. (Review Section of Physics Letters), 193, 137–163 (1990)

    Article  MathSciNet  Google Scholar 

  18. Holmes, P., Full, R., Koditschek, D., Guckenheimer, J.: The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 48(2), 207–304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hurst, J.W., Chestnutt, J.E., Rizzi, A.A.: Design and philosophy of the BiMASC, a highly dynamic biped. In: Proceedings of the International Conference on Robotics and Automation, pp. 1863–1868, April 10–14, Roma (2007)

  20. Jindrich, D.L., Qiao, M.: Maneuvers during legged locomotion. Chaos 19(2), 026105 (2009)

    Article  MathSciNet  Google Scholar 

  21. Koditschek, D.E., Buehler, M.: Analysis of a simplified hopping robot. Int. J. Robot. Res. 10(6), 587–605 (1991)

    Article  Google Scholar 

  22. LaBarbera, M.: Why the wheels won’t go. Am. Nat. 121(3), 395–408 (1983)

    Article  Google Scholar 

  23. Nelson, G.M., Quinn, R.D.: Posture control of a cockroach-like robot. IEEE Control Syst. Mag. 19(2), 9–14 (1999)

    Article  MATH  Google Scholar 

  24. Playter, R., Buehler, M., Raibert, M.: BigDog. Proc. SPIE 6230 (2006). doi:10.1117/12.084087

  25. Poulakakis, I., Grizzle, J.W.: Formal embedding of the spring loaded inverted pendulum in an asymmetric hopper. In: Proceedings of the European Control Conference, Kos (2007)

  26. Poulakakis, I., Papadopoulos, E., Buehler, M.: On the stability of the passive dynamics of quadrupedal running with a bounding gait. Int. J. Robot. Res. 25(7), 669–687 (2006)

    Article  Google Scholar 

  27. Pratt, J., Pratt, G.: Intuitive control of a planar bipedal walking robot. In: Proceedings of the International Conference on Robotics and Automation, pp. 2014–2021, Leuven, Belgium (1998)

  28. Raibert, M.: Legged Robots that Balance. MIT Press Series in Artificial Intelligence. MIT Press, Boston (1986)

    Google Scholar 

  29. Saranli, U.: Dynamic locomotion with a hexapod robot. Ph.D., The University of Michigan, Ann Arbor, MI, September (2002)

  30. Saranli, U., Koditschek, D.E.: Template based control of hexapedal running. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 1374–1379, Taipei, Taiwan, September (2003)

  31. Saranli, U., Schwind, W.J., Koditschek, D.E.: Toward the control of a multi-jointed, monoped runner. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 2676–2682, New York (1998)

  32. Saranli, U., Buehler, M., Koditschek, D.E.: RHex: a simple and highly mobile robot. Int. J. Robot. Res. 20(7), 616–631 (2001)

    Article  Google Scholar 

  33. Sato, A., Buehler, M.: A planar hopping robot with one actuator: design, simulation, and experimental results. In: Proceedings of the International Conference on Intelligent Robots and Systems, vol. 4, pp. 3540–3545, Sept.–2 Oct., Sendai (2004)

  34. Schmitt, J.: A simple stabilizing control for sagittal plane locomotion. J. Comput. Nonlinear Dyn. 1(4), 348–357 (2006)

    Article  Google Scholar 

  35. Schwind, W.J.: Spring loaded inverted pendulum running: a plant model. Ph.D., University of Michigan, Ann Arbor (1998)

  36. Schwind, W.J., Koditschek, D.E.: Approximating the stance map of a 2 DOF monoped runner. J. Nonlinear Sci. 10(5), 533–568 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zeglin, G.: The Bow Leg hopping robot. Ph.D., Carnegie Mellon University, Pittsburgh, CMU-RI-TR-99-33, October (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uluc̣ Saranlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saranlı, U., Arslan, Ö., Ankaralı, M.M. et al. Approximate analytic solutions to non-symmetric stance trajectories of the passive Spring-Loaded Inverted Pendulum with damping. Nonlinear Dyn 62, 729–742 (2010). https://doi.org/10.1007/s11071-010-9757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9757-8

Keywords

Navigation