Skip to main content
Log in

Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with problems for which it is necessary to represent the oscillations of the electromechanical seismograph about their position of equilibrium as regards the synchronous condition. The loss of stability of the system occurs through a saddle-node bifurcation, where there is a collision of the stable orbit with an unstable one. Then, global bifurcations and chaotic dynamics of an electromechanical seismograph are the aims of this study. The electrical part of the model is described by an extended force Rayleigh oscillator with Φ 6-potential, while the mechanical part is described by a damped and driven linear oscillator. By using the direct perturbation technique, we analytically obtain the general solution of the first-order equation. Through the boundedness condition of the general solution we get the famous Melnikov function predicting the onset of chaos in the case where the Φ 6-potential is three wells, which are complemented by numerical simulations by which we illustrate the bifurcation curves and the fractality of the basins of attraction. The results show that the threshold amplitude of harmonic excitation for the onset of instability will move upwards as the amplitude intensity of the ground motion increases. These results suggest that much attention should be paid to controlling the increase of the amplitude of the ground motion, especially when the harmonic excited electromechanical seismograph system as a main device is applied to some practical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rand, R.H., Holmes, P.J.: Bifurcation of periodic motions in two weakly coupled van der pol oscillators. Int. J. Non-Linear Mech. 15, 387–399 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arafat, H.N., Nayfeh, A.H.: Non-linear responses of suspended cables to primary resonance excitation. J. Sound Vib. 266, 325–354 (2003)

    Article  Google Scholar 

  3. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J.A.: Using small perturbations to control chaos. Nature 363, 411–417 (1993)

    Article  Google Scholar 

  5. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J.A.: Using chaos to direct trajectories. Phys. Rev. Lett. 65, 3215–3218 (1990)

    Article  Google Scholar 

  6. Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41, 726–733 (1990)

    Article  MathSciNet  Google Scholar 

  7. Ramesh, M., Narayanan, S.: Chaos control by non-feedback methods in the presence of noise. Chaos Solitons Fractals 10, 1473–1489 (1990)

    Article  Google Scholar 

  8. Braiman, Y., Goldhirsch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 20, 2545–2548 (1991)

    Article  MathSciNet  Google Scholar 

  9. Show, W., Wiggins, S.: Chaotic dynamics of a whirling pendulum. Physica D 31, 190–211 (1988)

    Article  MathSciNet  Google Scholar 

  10. Melnikov, V.K.: On the stability of the centre for time-periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)

    Google Scholar 

  11. Holmes, P.J., Marsden, J.E.: Horseshoe and Arnold diffusion for Hamiltonian system on Lie groups. Indiana Univ. Math. J. 32, 273–309 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Holmes, P.J., Marsden, J.E.: Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Commun. Math. Phys. 82, 523–544 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Holmes, P.J., Marsden, J.E.: Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys. 23, 669–675 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hegazy, U.H.: Dynamics and control of self-sustained electromechanical seismographs with time varying stiffness. Mecanica 44, 355–368 (2009)

    Article  MATH  Google Scholar 

  15. Chedjou, J.C., Kyamakya, K., Moussa, I., Kuchenbecker, H.-P., Mathis, W.: Behavior of a self-sustained electromechanical transducer and routes to chaos. J. Vib. Acoust. 128, 1–12 (2006)

    Article  Google Scholar 

  16. Siewe Siewe, M., Moukam Kakmeni, F.M., Bowong, S., Tchawoua, C.: Non-linear response of a self-sustained electromechanical seismographs to fifth resonance excitations and chaos control. Chaos Solitons Fractals 29, 431–445 (2006)

    Article  MATH  Google Scholar 

  17. Moukam Kakmeni, F.M., Bowong, S., Tchawoua, C., Kaptouom, E.: Dynamics and chaos control in nonlinear electrostatic transducers. Chaos Solitons Fractals 21, 1093–1108 (2004)

    Article  MATH  Google Scholar 

  18. Yamapi, R., Chabi Orou, J.B., Woafo, P.: Harmonic oscillations, stability and chaos control in a non-linear electromechanical system. J. Sound Vib. 259, 1253–1264 (2003)

    Article  MathSciNet  Google Scholar 

  19. Moukam Kakmeni, F.M., Bowong, S., Tchawoua, C., Kaptouom, E.: Resonance, bifurcation and chaos control in electrostatic transducers with two external periodic forces. Physica A 333, 87–105 (2004)

    Article  Google Scholar 

  20. Kitio Kwuimy, C.A., Woafo, P.: Dynamics of a self-sustained electromechanical system with flexible arm and cubic coupling. Commun. Nonlinear Sci. Numer. Simul. 12, 1504–1517 (2007)

    Article  MATH  Google Scholar 

  21. Kitio Kwuimy, C.A., Woafo, P.: Dynamics, chaos and synchronization of self-sustained electromechanical systems with clamped-free flexible arm. Nonlinear Dyn. 53, 201–213 (2008)

    Article  MATH  Google Scholar 

  22. Ge, Z.-M., Lin, T.-N.: Chaos, chaos control and synchronization of electro-mechanical gyrostat system. J. Sound Vib. 259, 585–603 (2003)

    Article  MathSciNet  Google Scholar 

  23. Yamgoué, S.B., Kofané, T.C.: Dynamics of driven coupled oscillators with shape deformable potential. Chaos Solitons Fractals 15, 119–129 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Siewe Siewe, M., Moukam Kakmeni, F.M., Tchawoua, C.: Resonance oscillations and homoclinic bifurcation in a Φ6-Van der Pol oscillators. Chaos Solitons Fractals 21, 841–853 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Siewe Siewe, M., Moukam Kakmeni, F.M., Tchawoua, C., Woafo, P.: Bifurcations and chaos in periodically and externally driven Φ6-Van der Pol oscillators. Physica A 357, 383–396 (2005)

    Article  Google Scholar 

  26. Tchoukuegno, R., Woafo, P.: Dynamics and active control of motion of a particle in a Φ6 potential with a parametric forcing. Physica D 167, 86–100 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Moon, F.C., Li, G.X.: Fractal basin boundaries and homoclinic orbits for periodic motions in a two-well potential. Phys. Rev. Lett. 55, 1439–1442 (1985)

    Article  MathSciNet  Google Scholar 

  28. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Siewe Siewe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siewe Siewe, M., Yamgoué, S.B., Moukam Kakmeni, F.M. et al. Chaos controlling self-sustained electromechanical seismograph system based on the Melnikov theory. Nonlinear Dyn 62, 379–389 (2010). https://doi.org/10.1007/s11071-010-9725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9725-3

Keywords

Navigation