Skip to main content
Log in

Painlevé integrability and N-soliton solution for the variable-coefficient Zakharov–Kuznetsov equation from plasmas

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

With the help of symbolic computation, this paper investigates the variable-coefficient Zakharov–Kuznetsov equation which governs the two-dimensional ion-acoustic waves obliquely propagating in an inhomogeneous magnetized two-ion-temperature dusty plasma. The integrability of this model is examined through the Painlevé analysis. Via the Hirota method, the bilinear form of such model is derived. Based on the obtained bilinear form, the N-soliton solution is constructed. Propagation characteristics and interaction behaviors of the solitons are discussed through the graphical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoitcheva, G., Draayer, J.P., Ludu, A.: Antisoliton model for fission modes. Math. Comput. Simul. 55, 621–625 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Hisakado, M.: Breather trapping mechanism in piecewise homogeneous DNA. Phys. Lett. A 227, 87–93 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Tian, B., Gao, Y.T.: Spherical nebulons and Backlund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation. Eur. Phys. J. D 33, 59–65 (2005)

    Article  Google Scholar 

  4. Gao, Y.T., Tian, B.: Reply to: “Comment on: ‘Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation’ ”. Phys. Lett. A 361, 523–528 (2007)

    Article  MATH  Google Scholar 

  5. Hong, W.P.: Comment on: “Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation”. Phys. Lett. A 361, 520–522 (2007)

    Article  MATH  Google Scholar 

  6. Tian, B., Gao, Y.T.: Spherical Kadomtsev–Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A 340, 243–250 (2005)

    Article  MATH  Google Scholar 

  7. Tian, B., Gao, Y.T.: Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas. Phys. Lett. A 362, 283–288 (2007)

    Article  Google Scholar 

  8. Gao, Y.T., Tian, B.: Cylindrical Kadomtsev–Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves. Phys. Lett. A 349, 314–319 (2006)

    Article  Google Scholar 

  9. Yan, Z.Y., Zhang, H.Q.: Symbolic computation and new families of exact soliton-like solutions to the integrable Broer–Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34, 1785–1792 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Tian, B., Wei, G.M., Zhang, C.Y., Shan, W.R., Gao, Y.T.: Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels, Bose–Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A 356, 8–16 (2006)

    Article  MATH  Google Scholar 

  11. Barnett, M.P., Capitani, J.F., Von Zur Gathen, J., Gerhard, J.: Symbolic calculation in chemistry: selected examples. Int. J. Quant. Chem. 100, 80–104 (2004)

    Article  Google Scholar 

  12. Liu, W.J., Meng, X.H., Cai, K.J., Lü, X., Xu, T., Tian, B.: Analytic study on soliton-effect pulse compression in dispersion-shifted fibers with symbolic computation. J. Mod. Opt. 55, 1331–1344 (2008)

    Article  MATH  Google Scholar 

  13. Tian, B., Gao, Y.T., Zhu, H.W.: Variable-coefficient higher-order nonlinear Schrödinger model in optical fibers: variable-coefficient bilinear form, Bäklund transformation, brightons and symbolic computation. Phys. Lett. A 366, 223–229 (2007)

    Article  Google Scholar 

  14. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  15. Matveev, V.B., Salle, M.A.: Darboux Transformations and Soliton. Springer, Berlin (1991)

    Google Scholar 

  16. Dubrousky, V.G., Konopelchenko, B.G.: Delta-dressing and exact solutions for the (2+1)-dimensional Harry Dym equation. J. Phys. A 27, 4619–4628 (1994)

    Article  MathSciNet  Google Scholar 

  17. Caruello, F., Tabor, M.: Painlevé expansions for nonintegrable evolution equations. Physica D 39, 77–94 (1989)

    Article  MathSciNet  Google Scholar 

  18. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Hirota, R., Satsuma, J.: A variety of nonlinear network equations generated from the Bäcklund transformation for the Toda lattice. Prog. Theor. Phys., Suppl. 59, 64–100 (1976)

    Article  MathSciNet  Google Scholar 

  21. Hirota, R.: A new form of Bäcklund transformations and its relation to the inverse scattering problem. Prog. Theor. Phys. 52, 1498–1512 (1974)

    Article  MATH  Google Scholar 

  22. Hu, X.B.: Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation. J. Phys. A 27, 201–214 (1994)

    Article  MATH  Google Scholar 

  23. Wadati, M., Sanuki, H., Konno, K.: Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws. Prog. Theor. Phys. 53, 419–436 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wadati, M.: Wave propagation in nonlinear lattice. I. J. Phys. Soc. Jpn. 38, 673–680 (1975)

    Article  MathSciNet  Google Scholar 

  25. Konno, K., Wadati, M.: Simple derivation of Bäcklund transformation from Riccati form of inverse method. Prog. Theor. Phys. 53, 1652–1656 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  26. Li, L.L., Tian, B., Zhang, C.Y., Xu, T.: On a generalized Kadomtsev–Petviashvili equation with variable coefficients via symbolic computation. Phys. Scr. 76, 411–417 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wazwaz, A.M.: Exact solutions with solitons and periodic structures for the Zakharov–Kuznetsov (ZK) equation and its modified form. Commun. Nonlinear Sci. Numer. Simul. 10, 597–606 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zakharov, V.E., Kuznetsov, E.A.: On three-dimensional solitons. Sov. Phys. 39, 285–288 (1974)

    Google Scholar 

  29. Mushtaq, A., Shah, H.A.: Nonlinear Zakharov–Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic waves in a relativistic, rotating magnetized electron-positron-ion plasma. Phys. Plasmas 12, 072306 (2005)

    Article  Google Scholar 

  30. Iwasaki, H., Toh, S., Kawahara, T.: Cylindrical quasi-solitons of the Zakharov–Kuznetsov equation. Physica D 43, 293–303 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kourakis, I., Moslem, W.M., Abdelsalam, U.M., Sabry, R., Shukla, P.K.: Nonlinear dynamics of rotating multi-component pair plasmas and e-p-i plasmas. Plasma Fusion Res. 4, 1–19 (2009)

    Article  Google Scholar 

  32. He, J.H.: Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 26, 695–700 (2005)

    Article  MATH  Google Scholar 

  33. Yan, Z.L., Liu, X.Q.: Symmetry and similarity solutions of variable coefficients generalized Zakharov–Kuznetsov equation. Appl. Math. Comput. 180, 288–294 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. El-Wakil, S.A., Madkour, M.A., Abdou, M.A.: Application of Exp-function method for nonlinear evolution equations with variable coefficients. Phys. Lett. A 369, 62–69 (2007)

    Article  MathSciNet  Google Scholar 

  35. Conte, R. (ed.): The Painlevé Property. Springer, New York (1999)

    MATH  Google Scholar 

  36. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ramani, A., Grammaticos, B., Bountis, T.: The Painlevé property and singularity analysis of integrable and nonintegrable systems. Phys. Rep. 180, 159–245 (1989)

    Article  MathSciNet  Google Scholar 

  38. Tabor, M.: Chaos and Integrability in Nonlinear Dynamics. Wiley, New York (1989)

    MATH  Google Scholar 

  39. Hirota, R., Satsuma, J.: N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Jpn. 40, 611–614 (1976)

    Article  MathSciNet  Google Scholar 

  40. Hirota, R., Hu, X.B., Tang, X.Y.: A vector potential KdV equation and vector Ito equation: soliton solutions, bilinear Backlund transformations and Lax pairs. J. Math. Anal. Appl. 288, 326–348 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, QX., Tian, B., Liu, WJ. et al. Painlevé integrability and N-soliton solution for the variable-coefficient Zakharov–Kuznetsov equation from plasmas. Nonlinear Dyn 62, 229–235 (2010). https://doi.org/10.1007/s11071-010-9713-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9713-7

Keywords

Navigation