Skip to main content
Log in

Kepler’s equation and limit cycles in a class of PWM feedback control systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to point out some new results concerning the ripple instability in the closed-loop control system using pulse width modulators (PWM), with natural sampling, as power amplifier. The presented analysis, based on the dual-input describing function method and the theoretical framework of Kepler’s problem, shows an equivalence between the computation of switching instants of the PWM and the eccentric anomaly of the planet orbit around the sun, giving a simple stability criterion and a sufficient condition for the absence of solutions of the harmonic balance equation and, therefore, the probable absence of limit cycles of a period of a multiple of that characteristic of the modulator. The derived stability criterion, by using the describing function method, is successively compared with the local stability of the closed-loop PWM system for first- and second-order plants. In the first case it has been formally proved that the proposed criterion ensures the local stability of an equilibrium point, while in the second one a Monte Carlo simulation has confirmed that the selection of the modulator parameters, according to the proposed criterion, gives an effective method to avoid limit cycles and to ensure the local stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gelig, A.Kh., Churilov, A.N.: Stability and Oscillations of Nonlinear Pulse-Modulated Systems. Birkhäuser, Basel (1998)

    MATH  Google Scholar 

  2. Tsypkin, Y.Z., Churilov, A.N.: Relay Control Systems. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  3. La Cava, M., Paletta, G., Picardi, C.: Stability analysis of PWM feedback control system with PID regulators. Int. J. Control 39(5), 987–1005 (1984)

    Article  MATH  Google Scholar 

  4. Middlebrook, R.D., Cuk, S.: A general unified approach to modeling switching-converter power stages. In: IEEE Power Electronics Specialists Conference Record, New York, 1976

  5. Chung, S.C., Huang, S.R., Lin, C.I.: Applications of describing functions to estimate the continuous and discontinuous conduction mode for a DC-to-DC buck converter. IEEE Proc. Electr. Power Appl. 147(6), 513–519 (2000)

    Article  Google Scholar 

  6. Hou, L., Michel, A.N.: Stability analysis of pulse-width-modulated feedback systems. Automatica 37, 1335–1349 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gelb, A., Vander Velde, W.E.: Multiple-input describing functions and nonlinear system design. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  8. Taylor, J.H.: Describing Functions. In: Electrical Engineering Encyclopedia. Wiley, New York (1999)

  9. Kienitz, K.H.: On the implementation of the eigenvalue method for limit cycle determination in nonlinear systems. Nonlinear Dyn. 45, 25–30 (2005)

    MathSciNet  Google Scholar 

  10. Somieski, G.: An eigenvalue method for calculation of stability and limit cycles in nonlinear systems. Nonlinear Dyn. 26, 3–22 (2001)

    Article  MATH  Google Scholar 

  11. Sun, Y.J.: Existence and uniqueness of limit cycle for a class of nonlinear discrete-time systems. Chaos Solitons Fractals 38, 89–96 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, T., Tadé, M.O., Tian, Y.C.: Linear estimate of the number of limit cycles for a class of non-linear systems. Chaos Solitons Fractals 31, 804–810 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Delfeld, F.R., Murphy, G.J.: Analysis of pulse-width-modulated control systems. IRE Trans. Aut. Control 283–292 (1961)

  14. Peterchev, A.V., Sanders, S.R.: Quantization resolution and limit cycling in digitally controlled PWM converters. IEEE Trans. Power Electron. 18, 301–308 (2003)

    Article  Google Scholar 

  15. Abdelnour, G., Cheung, J., Chang, C., Tinetti, G.: Application of describing function in the transient response analysis of a three term fuzzy controller. IEEE Trans. Syst. Man Cybern. 23(2), 607–610 (1993)

    Article  MATH  Google Scholar 

  16. Heyns, L.J., Kruger, J.J.: Describing function based analysis of a nonlinear hydraulic transmission line. IEEE Trans. Control Syst. Technol. 2(1), 31–35 (1994)

    Article  Google Scholar 

  17. Soto, J.C., De La Sen, M.: Non-linear oscillations in nonperiodic sampling systems. Electron. Lett. 20(20), 816–818 (1984)

    Article  Google Scholar 

  18. Williamson, D.: Describing function analysis and oscillations in non-linear networks. Int. J. Control 24(2), 283–296 (1976)

    Article  MATH  Google Scholar 

  19. Lim, Y.: Quasi-linear analysis of oscillating servo-systems with random inputs. IEEE Trans. Autom. Control 10(2), 164–171 (1965)

    Article  Google Scholar 

  20. Colwell, P.: Solving Kepler’s Equation. Willmann-Bell, Richmond (1993)

    MATH  Google Scholar 

  21. Boyd, J.P.: Rootfinding for a transcendental equation without a first guess: Polynomialization of Kepler’s equation through Chebyshev polynomial expansion of the sine. Appl. Numer. Math. 57, 12–18 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dubinov, A.E., Galidakis, I.N.: Explicit Solution of the Kepler Equation. Phys. Part. Nucl. Lett. 4(3), 213–216 (2007)

    Article  Google Scholar 

  23. Feinstein, S.A., McLaughlin, C.A.: Dynamic discretization method for solving Kepler’s equation. Celest. Mech. Dyn. Astr. 96, 49–62 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mortari, D., Clocchiatti, A.: Solving Kepler’s Equation using Bézier curves. Celest. Mech. Dyn. Astr. 99, 45–57 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kapteyn, M.W.: Recherches sur les fonctions de Fourier-Bessel. Ann. Sci. de l’Ecole Norm. Super. 3(10), 91–122 (1893)

    MathSciNet  Google Scholar 

  26. Watson, G.N.: A treatise on the theory of the Bessel function. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  27. Skoog, R.A., Blankenship, G.L.: Generalized pulse-modulated feedback systems: Norms, gains, Lipschitz constants, and stability. IEEE Trans. Autom. Control 15(3), 300–315 (1970)

    Article  MathSciNet  Google Scholar 

  28. Eisinberg, A., Fedele, G., Frascino, D.: Local stability of a class of PWM feedback control systems, Tech. Rep., n. 1/08. Lab. Logistica, University Calabria, Rende, Italy, 2008

  29. Balestrino, A., De Maria, G., Sciavicco, L.: On the ordinary and modified subharmonic control. In: II IFAC Symposium on Control in Power and Electric Drives, Düsseldorf, pp. 155–163, 1977

  30. Mahalanabis, A.K., Nath, A.K.: On the dual-input describing function of a nonlinear element. IEEE Trans. Autom. Control 10(2), 203–204 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Fedele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisinberg, A., Fedele, G. & Frascino, D. Kepler’s equation and limit cycles in a class of PWM feedback control systems. Nonlinear Dyn 62, 215–227 (2010). https://doi.org/10.1007/s11071-010-9712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9712-8

Keywords

Navigation