Skip to main content
Log in

Approximate solutions of Maxwell Bloch equations and possible Lotka Volterra type behavior

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamical properties of laser models based on the Maxwell Bloch equation are studied. Instances of stability and chaotic behavior are investigated. Special solutions of the system one of which reduces to the Lotka Volterra system under simplifying assumptions are derived. Reasons for the absence of oscillating solutions in the modified systems are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hacinliyan, A.S., Perdahçı, N.Z., Şahin, G., Yıldırım, H.A.: Transforming to chaos by normal forms. In: CMDS 10, Shoresh, Israel, pp. 15–20 (2003)

  2. Arecchi, F.T.: Chaos and generalized multistability in quantum optics. Phys. Scr. 1985(T9), 85–92 (1985)

    Article  Google Scholar 

  3. Haken, H.: Laser Light Dynamics, vol. 2. North-Holland, Amsterdam (1985)

    Google Scholar 

  4. Khanin, Y.I.: Dynamics of Lasers. Soviet Radio, Moscow (1975)

    Google Scholar 

  5. Clarici, G., Griese, E.: Analytical laser model for optical signal integrity analysis. In: International Students and Young Scientists Workshop “Photonics and Microsystems” (2005)

  6. Weiss, C.O., Godone, A., Olafsson, A.: Routes to chaotic emission in a cw He–Ne laser. Phys. Rev. A 28(2), 892–895 (1983)

    Article  Google Scholar 

  7. Grassberger, P., Schreiber, T., Schaffrath, C.: Non-linear time sequence analysis. Int. J. Bifurc. Chaos 1, 521–547 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eckmann, J.P., Kamphorst, S.O., Ruelle, D.: Ergodic Theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)

    Article  Google Scholar 

  9. Kantz, H.: A robust method to estimate the maximal Lyapunov exponent of a time series. Phys. Lett. A 185, 77–87 (1994)

    Article  Google Scholar 

  10. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory,. Springer, New York (1995)

    Google Scholar 

  11. Chrostowski, J.: Noisy bifurcation in acousto-optic bistability. Phys. Lett. A 26, 3023–3025 (1982)

    Google Scholar 

  12. Erneux, T., Kozyreff, G.: Nearly vertical Hopf bifurcation for a passively Q-switched microchip laser. J. Stat. Phys. 101, 543–552 (2000)

    Article  MATH  Google Scholar 

  13. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1996). (ISBN 0387970037)

    Google Scholar 

  14. Namachchivaya, N.S., Doyle, M.M., Langford W.F., Evans N.W.: Normal form for generalized Hopf bifurcation with non-semisimple 1:1 resonance. Z. Angew. Math. Phys. 45, 312–335 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rand, R., Verdugo, A.: Hopf bifurcation formula for first order differential-delay equations. Commun. Nonlin. Sci. Numer. Simul. 12, 859–864 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wang, R., Xiao, D.: Bifurcations and chaotic dynamics in a 4-dimensional competitive Lotka-Volterra system. Nonlinear Dyn. doi:10.1007/s11071-009-9547-3 (2009)

    Google Scholar 

  17. Sun, X.-K., Huo, H.-F., Xiang, H.: Bifurcation and stability analysis in predator–prey model with a stage-structure for predator. Nonlinear Dyn. doi:10.1007/s11071-009-9495-y (2009)

    MathSciNet  Google Scholar 

  18. Siegman, A.E.: Lasers. University Science Books, Sausalito (1986). ISBN: 0-935702-11-3

    Google Scholar 

  19. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.N.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Krise, S., Choudhury, S.R.: Bifurcations and chaos in a predator–prey model with delay and a laser–diode system with self-sustained pulsations. Chaos Solitons Fractals 16, 59–77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Hacinliyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hacinliyan, A.S., Kusbeyzi, I. & Aybar, O.O. Approximate solutions of Maxwell Bloch equations and possible Lotka Volterra type behavior. Nonlinear Dyn 62, 17–26 (2010). https://doi.org/10.1007/s11071-010-9695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9695-5

Keywords

Navigation