Abstract
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)
Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors. Springer, New York (1982)
Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2002)
Rössler, O.E.: An equation for continuous chaos. Phys. Lett. A 57, 397–398 (1976)
Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50, R647 (1994)
Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)
Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 3, 659–661 (2002)
Lü, J.H., Chen, G.R., Cheng, D.Z., Čelikovský, S.: Bridge the gap between the Lorenz and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002)
Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos Solitons Fractals 22, 1031–1038 (2004)
Wang, G., Zhang, X., Zheng, Y., Li, X.: A new modified hyperchaotic Lü system. Physica A 371, 260–272 (2006)
Chen, C.H., Sheu, L.J., Chen, H.K., Chen, J.H., Wang, H.C., Chao, Y.C., Lin, Y.K.: A new hyper-chaotic system and its synchronization. Nonlinear Anal. Real World Appl. 10, 2088–2096 (2009)
Rikitake, T.: Oscillations of a system of disk dynamos. Proc. Camb. Philos. Soc. 54, 89–95 (1958)
Keisuke, I.: Chaos in the Rikitake two-disk dynamo system. Earth Planet. Sci. Lett. 51, 451–457 (1980)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Hifer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2001)
Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984)
Sun, H.H., Abdelwahad, A.A., Onaral, B.: Linear approximation of transfer function with a pole of fractional order. IEEE Trans. Automat. Control 29, 441–444 (1984)
Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971)
Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)
Podlubny, I.: Fractional-order systems and PIλDμ-controllers. IEEE Trans. Automat. Control 44, 208–214 (1999)
Li, C.G., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004)
Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004)
Deng, W., Li, C.P.: Chaos synchronization of the fractional Lü system. Physica A 353, 61–72 (2005)
Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)
Li, G.H.: Modified projective synchronization of chaotic system. Chaos Solitons Fractals 32, 1786–1790 (2007)
Hung, M.L., Yan, J.J., Liao, T.L.: Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input. Chaos Solitons Fractals 35, 181–187 (2008)
Li, C.G., Liao, X.F., Yu, J.B.: Synchronization of fractional order chaotic systems. Phys. Rev. E 68, 067203 (2003)
Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005)
Li, C., Yan, J.: The synchronization of three fractional differential systems. Chaos Solitons Fractals 32, 751–757 (2007)
Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387, 57–70 (2008)
Hardy, Y., Steeb, W.H.: The Rikitake two-disk dynamo system and domains with periodic orbits. Int. J. Theor. Phys. 38, 2413–2417 (1999)
Vaněcěk, A., Čelikovský, S.: Control Systems: From Linear Analysis to Synthesis of Chaos. Prentice-Hall, London (1996)
Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)
Samko, S.G., Klibas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam (1993)
Keil, F., Mackens, W., Werther, J.: Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering, and Molecular Properties. Springer, Heidelberg (1999)
Butzer, P.L., Westphal, U.: An Introduction to Fractional Calculus. World Scientific, Singapore (2000)
Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 16, 339–351 (2003)
Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)
Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)
Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)
Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: IEEE-SMC Proceedings, Computational Engineering in Systems and Application Multi-Conference, IMACS, vol. 2, pp. 963–968. Lille, France (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, X., Wang, H. A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn 61, 407–417 (2010). https://doi.org/10.1007/s11071-010-9658-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-010-9658-x