Skip to main content
Log in

Modeling traffic flow correlation using DFA and DCCA

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The focus of the present paper is on the power-law auto-correlations and crosscorrelations in traffic time series. Detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA) are used to study the traffic flow fluctuations. We find that the original traffic fluctuation time series may exhibit power-law auto-correlations; however, the sign-separated traffic fluctuation signals, both the positive fluctuation signals and the negative fluctuation signals, exhibit anti-correlated behavior. Further, we show that two original traffic speed fluctuation time series derived from adjacent sections exhibit much stronger power-law cross-correlations than the two time series derived from adjacent lanes. Finally, we demonstrate that for two sign-separated traffic fluctuation signals, there exist long-range cross-correlations between the positive fluctuation signals and the negative fluctuation signals, derived from two adjacent lanes, respectively. But, for two same-sign traffic fluctuation signals derived from two adjacent lanes, there is power-law cross-anti-correlation in the variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gipps, P.G.: A behavioral car-following model for computer simulation. Transp. Res. B 15, 105–111 (1981)

    Article  Google Scholar 

  2. Munjal, P.K., Hsu, Y.S.: Experimental validation of lane-changing hypotheses from aerial data. Highw. Res. Rec. 456, 5–11 (1973)

    Google Scholar 

  3. Stock, W.A., Wang, J.J.: Stimulus-response lane-changing model at freeway drops. Transp. Res. Rec. 682, 64–66 (1978)

    Google Scholar 

  4. Worrall, R.D., Bullen, A.G., Gur, Y.: An elementary stochastic model of lane-changing on a multilane highway. Highw. Res. Rec. 308, 1–12 (1970)

    Google Scholar 

  5. Li, X.W., Shang, P.J.: Multifractal classification of road traffic flows. Chaos Solitons Fractals 31, 1089–1094 (2007)

    Article  Google Scholar 

  6. Shang, P.J.: Multifractal analysis of highway traffic data. Chin. Phys. 16, 365–373 (2007)

    Article  MathSciNet  Google Scholar 

  7. Kerner, B.S.: The Physics of Traffic. Springer, New York (2004)

    Google Scholar 

  8. Kim, Y., Keller, H.: Online traffic flow model applying the dynamic flow-density relation. In: Proceedings of Eleventh International Conference on Road Transport Information and Control, The Commonwealth Institute, London, 19–21 March 2002

  9. Messai, N., Thomas, P., Lefebvre, D., Moudni, A.El.: Optimal neural networks architectures for the flow-density relationships of traffic models. Math. Comput. Simul. 60, 401–409 (2002)

    Article  MATH  Google Scholar 

  10. Kwon, J., Varaiya, P., Skabardonis, A.: Estimation of truck traffic volume from single loop detectors using lane-to-lane speed correlation. J. Transp. Res. Board 1856, 106–117 (2003)

    Article  Google Scholar 

  11. Yamashita, T., Izumi, K., Kurumatani, K.: Car navigation with route information sharing for improvement of traffic efficiency. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA, 3–6 October 2004

  12. Du, J., Masters, J., Barth, M.: Lane-level positioning for in-vehicle navigation and automated vehicle location (AVL) systems. In: Proceedings of the 7th International IEEE Conference on Intelligent Transportation Systems, Washington, DC, USA, 3–6 October 2004

  13. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA sequences. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  14. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in non-stationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  Google Scholar 

  15. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316, 87–114 (2002)

    Article  MATH  Google Scholar 

  16. Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.A.H., Havlin, S., Bunde, A.: Detecting long range correlations with detrended fluctuation analysis. Physica A 295, 441–454 (2001)

    Article  MATH  Google Scholar 

  17. Chen, Z., Ivanov, P., Hu, K., Stanley, H.E.: Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 65, 041107 (2002)

    Article  Google Scholar 

  18. Limei, X., Plamen, C.I., Kun, H., Zhi, C., Anna, C., Stanley, H.E.: Quantifying signals with power-law correlations: a comparative study of detrended fluctuation analysis and detrended moving average techniques. Phys. Rev. E 71, 051101 (2005)

    Article  Google Scholar 

  19. Podobnik, B., Stanley, H.E.: Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys. Rev. Lett. 100, 084102 (2008)

    Article  Google Scholar 

  20. Jun, W.C., Oh, G., Kim, S.: Understanding volatility correlation behavior with a magnitude cross-correlation function. Phys. Rev. E 73, 066128 (2006)

    Article  Google Scholar 

  21. Podobnik, B., Horvatic, D., Lam, A.N., Stanley, H.E., Ivanov, P.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Physica A 387, 3954–3959 (2008)

    Article  MathSciNet  Google Scholar 

  22. Shang, P.J., Lin, A.J., Liu, L.: Chaotic SVD method for minimizing the effect of exponential trends in detrended fluctuation analysis. Physica A 388, 720–726 (2009)

    Article  Google Scholar 

  23. Shang, P.J., Lu, Y.B., Kamae, S.: Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis. Chaos Solitons Fractals 36, 82–90 (2008)

    Article  Google Scholar 

  24. Xu, N., Shang, P.J., Kamae, S.: Minimizing the effect of exponential trends in detrended fluctuation analysis. Chaos Solitons Fractals 41, 311–316 (2009)

    Article  Google Scholar 

  25. Shang, P.J., Lu, Y.B., Kamae, S.: The application of Holder exponent to traffic congestion warning. Physica A 370, 769–776 (2006)

    Article  Google Scholar 

  26. Makse, H.A., Havlin, S., Schwartz, M., Stanley, H.E.: Method for generating long-range correlations for large systems. Phys. Rev. E 53, 5445–5449 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjian Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, N., Shang, P. & Kamae, S. Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dyn 61, 207–216 (2010). https://doi.org/10.1007/s11071-009-9642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9642-5

Keywords

Navigation