Skip to main content
Log in

Vibration reduction of multi-parametric excited spring pendulum via a transversally tuned absorber

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The use of passive control strategy is a common way to stabilize and control dangerous vibrations in a nonlinear spring pendulum which is describing the ship’s roll motion. In this paper, a tuned absorber in the transversal direction is connected to a spring pendulum with multi-parametric excitation forces to control the vibration due to some resonance cases on the system. The method of multiple scale perturbation technique (MSPT) is applied to study the periodic solution of the given system near simultaneous sub-harmonic and internal resonance case. The stability of the steady-state solution near the resonance case is investigated and studied using frequency response equations. The effects of the absorber and some system parameters on the vibrating system are studied numerically. Optimal working conditions of the system are extracted when applying passive control methods. Comparison with the available published work is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c j (j=1,2,3,4):

the damping coefficient of the spring pendulum modes and the absorber ( \(c_{j}=\varepsilon\hat{c}_{j}\) )

ω1,ω2 and ω3:

the natural frequency of the spring pendulum modes and absorber

α,β:

the nonlinear parameters ( \(\beta_{1}=\varepsilon\hat{\beta}_{1})\)

f j :

the forcing amplitude of the main system ( \(f_{j}=\varepsilon^{2}\hat{f}_{j})\)

Ω j :

the frequencies of the main system

ε :

a small perturbation parameter

g :

the gravity acceleration

M,m:

the masses of the spring pendulum and absorber, respectively

l :

statically stretched length of the pendulum

l 1 :

statically stretched length of the absorber

\(x,\bar{x}\) :

the longitudinal response of the spring pendulum ( \(x=\bar{x}/l\) )

\(u,\bar{u}\) :

the longitudinal response of the absorber ( \(u=\bar{u}/l\) )

φ :

the angular response of the pendulum

k1,k2:

the linear stiffness of the spring pendulum and the absorber

k i (i=3,4,5,6):

the spring stiffness of nonlinear parameters

M(t):

a moment acts at the point O

F(t):

a force acts on mass M in the x direction

References

  1. Mwad, D.J.: Passive Vibration Control. Wiley, Chichester (1988)

    Google Scholar 

  2. Meirovitch, L.: Fundamental of Vibrations. McGraw-Hill, New York (2001)

    Google Scholar 

  3. Nayfeh, A.H., Mook, D.T., Marshell, A.R.: Nonlinear coupled of pitch and roll modes in ship motions. J. Hydronaut. 7(4), 145–152 (1973)

    Article  Google Scholar 

  4. Tondl, A., Nabergoj, R.: Dynamic absorbers for an externally excited pendulum. J. Sound Vib. 234(4), 611–624 (2000)

    Article  Google Scholar 

  5. Lee, W.K.: A global analysis of a forced spring–pendulum system. Ph.D. Dissertation, University of California, Berkeley (1988)

  6. Lee, W.K., Hsu, C.S.: A global analysis of a harmonically excited spring–pendulum system with internal resonance. J. Sound Vib. 171(3), 335–359 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lee, W.K., Park, H.D.: Chaotic dynamics of a harmonically excited spring pendulum system with internal resonance. J. Non-linear Dyn. 14, 211–229 (1997)

    MATH  Google Scholar 

  8. Lee, W.K., Park, H.D.: Second order approximation for chaotic responses of a harmonically excited spring–pendulum system. Int. J. Non-Linear Mech. 34, 749–757 (1999)

    Article  MATH  Google Scholar 

  9. Eissa, M.: Vibration control of non-linear mechanical system via a neutralizer. Electronic Bulletin No 16, Faculty of Electronic Engineering Menouf, Egypt, July (1999)

  10. Eissa, M., EL-Serafi, S., EL-Sheikh, M., Sayed, M.: Stability and primary simultaneous resonance of harmonically excited non-linear spring–pendulum system. Appl. Math. Comput. 145, 421–442 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, Part I: Transversally tuned absorber and negative \(G\dot{\varphi}^{n}\) feedback. Math. Comput. Appl. 11(2), 137–149 (2006)

    MATH  MathSciNet  Google Scholar 

  12. Eissa, M., Sayed, M.: A comparison between active and passive vibration control of non-linear simple pendulum, Part II: Longitudinal tuned absorber and negative \(G\ddot{\varphi}\) and G φ n feedback. Math. Comput. Appl. 11(2), 151–162 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Sayed, M.: Improving the mathematical solutions of non-linear differential equations using different control methods. Ph.D. Thesis, Department of Mathematics, Faculty of Science, Menoufia, Egypt (2006)

  14. Eissa, M., Sayed, M.: Vibration reduction of a three-DOF non-linear spring pendulum. Commun. Nonlinear Sci. Numer. Simul. 13, 465–488 (2008)

    Article  MATH  Google Scholar 

  15. Ayaz, Z., Vassalos, D., Turan, O.: Parametrical studies of a new numerical model for controlled ship motions in extreme astern seas. J. Marine Sci. Technol. 11, 19–38 (2006)

    Article  Google Scholar 

  16. Lee, D., Hong, S.Y., Lee, G.J.: Theoretical and experimental study on dynamic behavior of a damaged ship in waves. Ocean Eng. 34, 21–31 (2007)

    Article  Google Scholar 

  17. Bayly, P.V., Virgin, L.N.: An empirical study of the stability of periodic motion in the forced spring–pendulum. Proc. R. Soc. Lond. A 443, 391–408 (1993)

    Article  MATH  Google Scholar 

  18. Kamel, M.M.: Bifurcation analysis of a nonlinear coupled pitch–roll ship. Math. Comput. Simul. 73, 300–308 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhou, L., Chen, F.: Stability and bifurcation analysis for a model of a nonlinear coupled pitch–roll ship. Math. Comput. Simul. 79, 149–166 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Song, Y., Sato, H., Iwata, Y., Komatsuzaki, T.: The response of a dynamic vibration absorber system with a parametrically excited pendulum. J. Sound Vib. 259(4), 747–759 (2003)

    Article  Google Scholar 

  21. Amer, T.S., Bek, M.A.: Chaotic responses of a harmonically excited spring pendulum moving in circular path. J. Nonlinear Anal. 10, 3196–3202 (2009)

    MATH  MathSciNet  Google Scholar 

  22. Alasty, A., Shabani, R.: Chaotic motions and fractal basin boundaries in spring–pendulum system. J. Nonlinear Anal. 7, 81–95 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vyas, A., Bajaj, K.: Dynamics of auto-parametric vibration absorbers using multiple pendulums. J. Sound Vib. 246(1), 115–135 (2001)

    Article  MathSciNet  Google Scholar 

  24. Osama, A.M., Nayfeh, A.H.: Control of ship roll using passive and active anti-roll tanks. Ocean Eng. 36, 661–671 (2009)

    Article  Google Scholar 

  25. Kamel, M., Eissa, M., EL-Sayed, A.T.: Vibration reduction of a non-linear spring pendulum under multi-parametric excitations via a longitudinal absorber. Phys. Scr. 80, 025005 (2009) (12 pp.)

    Article  Google Scholar 

  26. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eissa, M., Kamel, M. & El-Sayed, A.T. Vibration reduction of multi-parametric excited spring pendulum via a transversally tuned absorber. Nonlinear Dyn 61, 109–121 (2010). https://doi.org/10.1007/s11071-009-9635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9635-4

Navigation