Skip to main content
Log in

An ℋ approach to stability analysis of switched Hopfield neural networks with time-delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new ℋ weight learning law for switched Hopfield neural networks with time-delay under parametric uncertainty. For the first time, the ℋ weight learning law is presented to not only guarantee the asymptotical stability of switched Hopfield neural networks, but also reduce the effect of external disturbance to an ℋ norm constraint. An existence condition for the ℋ weight learning law of switched Hopfield neural networks is expressed in terms of strict linear matrix inequality (LMI). Finally, a numerical example is provided to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, L., Gupta, M.M.: Stable dynamic backpropagation learning in recurrent neural networks. IEEE Trans. Neural Netw. 10, 1321–1334 (1999)

    Article  Google Scholar 

  2. Hopfield, J.J.: Neurons with grade response have collective computational properties like those of a two-state neurons. Proc. Natl. Acad. Sci. 81, 3088–3092 (1984)

    Article  Google Scholar 

  3. Gupta, M.M., Jin, L., Homma, N.: Static and Dynamic Neural Networks. Wiley-Interscience, New York (2003)

    Book  Google Scholar 

  4. Huang, H., Qu, Y., Li, H.: Robust stability analysis of switched Hopfield neural networks with time-varying delay under uncertainty. Phys. Lett. A 345, 345–354 (2005)

    Article  MATH  Google Scholar 

  5. Zhang, Q., Wei, X., Xu, J.: Global asymptotic stability of Hopfield neural networks with transmission delays. Phys. Lett. A 318, 399–405 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arik, S.: Global asymptotic stability of a larger class of neural networks with contant time delay. Phys. Lett. A 311, 504–511 (2003)

    Article  MATH  Google Scholar 

  7. Chu, T., Zhang, C., Zhang, Z.: Necessary and sufficient condition for absolute stability of normal neural networks. Neural Netw. 16, 1223–1227 (2003)

    Article  Google Scholar 

  8. Xu, S., Lam, J., Ho, D.W.C., Zou, Y.: Delay-dependent exponential stability for a class of neural networks with time delays. J. Comput. Appl. Math. 183, 16–28 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chu, T., Zhang, C.: New necessary and sufficient conditions for absolute stability of neural networks. Neural Netw. 20, 94–101 (2007)

    Article  MATH  Google Scholar 

  10. Shi, P., Zhang, J., Qiu, J., Xing, L.: New global asymptotic stability criterion for neural networks with discrete and distributed delays. Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng. 221, 129–135 (2007)

    Article  Google Scholar 

  11. Rovithakis, G.A., Christodoulou, M.A.: Adaptive control of unknown plants using dynamical neural networks. IEEE Trans. Syst. Man Cybern. 24, 400–412 (1994)

    Article  MathSciNet  Google Scholar 

  12. Jagannathan, S., Lewis, F.L.: Identification of nonlinear dynamical systems using multilayered neural networks. Automatica 32, 1707–1712 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Suykens, J.A.K., Vandewalle, J., De Moor, B.: Lure systems with multilayer perceptron and recurrent neural networks; absolute stability and dissipativity. IEEE Trans. Automat. Contr. 44, 770–774 (1999)

    Article  MATH  Google Scholar 

  14. Yu, W., Li, X.: Some stability properties of dynamic neural networks. IEEE Trans. Circuits Syst. I 48, 256–259 (2001)

    Article  MATH  Google Scholar 

  15. Chairez, I., Poznyak, A., Poznyak, T.: New sliding-mode learning law for dynamic neural network observer. IEEE Trans. Circuits Syst. II 53, 1338–1342 (2006)

    Article  Google Scholar 

  16. Yu, W., Li, X.: Passivity analysis of dynamic neural networks with different time-scales. Neural Process. Lett. 25, 143–155 (2007)

    Article  MathSciNet  Google Scholar 

  17. Rubio, J.J., Yu, W.: Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm. Neurocomputing 70, 2460–2466 (2007)

    Article  Google Scholar 

  18. Stoorvogel, A.: The ℋ Control Problem: A State-Space Approach. Prentice-Hall, New York (1992)

    Google Scholar 

  19. Nishiyama, K., Suzuki, K.: ℋ learning of layered neural networks. IEEE Trans. Neural Netw. 12, 1265–1277 (2001)

    Article  Google Scholar 

  20. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishinan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994)

    Google Scholar 

  21. Gahinet, P., Nemirovski, A., Laub, A.J., Chilali, M.: LMI Control Toolbox. The Mathworks, Natick (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Ki Ahn.

Additional information

This paper was supported by Wonkwang University in 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, C.K. An ℋ approach to stability analysis of switched Hopfield neural networks with time-delay. Nonlinear Dyn 60, 703–711 (2010). https://doi.org/10.1007/s11071-009-9625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9625-6

Navigation