Skip to main content
Log in

Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new four-dimensional autonomous system having complex hyperchaotic dynamics. Basic properties of this new system are analyzed, and the complex dynamical behaviors are investigated by dynamical analysis approaches, such as time series, Lyapunov exponents’ spectra, bifurcation diagram, phase portraits. Moreover, when this new system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of hyperchaotic systems reported before, which implies the new system has strong hyperchaotic dynamics in itself. The Kaplan–Yorke dimension, Poincaré sections and the frequency spectra are also utilized to demonstrate the complexity of the hyperchaotic attractor. It is also observed that the system undergoes an intermittent transition from period directly to hyperchaos. The statistical analysis of the intermittency transition process reveals that the mean lifetime of laminar state between bursts obeys the power-law distribution. It is shown that in such four-dimensional continuous system, the occurrence of intermittency may indicate a transition from period to hyperchaos not only to chaos, which provides a possible route to hyperchaos. Besides, the local bifurcation in this system is analyzed and then a Hopf bifurcation is proved to occur when the appropriate bifurcation parameter passes the critical value. All the conditions of Hopf bifurcation are derived by applying center manifold theorem and Poincaré–Andronov–Hopf bifurcation theorem. Numerical simulation results show consistency with our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Clifford, M.J., Cox, S.M.: Smart baffle placement for chaotic mixing. Nonlinear. Dyn. 43, 117–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lebaron, B., Arthur, W.B., Palmer, R.: Time series of properties of an artificial stock market. J. Econ. Dyn. Control 23, 1487–1516 (1999)

    Article  MATH  Google Scholar 

  4. Ma, J.H., Cui, Y.Q., Liu, L.X.: A study on the complexity of a business cycle model with great excitements in non-resonant condition. Chaos Solitons Fractals 39, 2258–2267 (2009)

    Article  Google Scholar 

  5. Parlitz, U., Kocarev, L., Stojanovski, T.: Encoding messages using chaotic synchronization. Phys. Rev. E 53, 4351–4361 (1996)

    Article  Google Scholar 

  6. Chen, G.R., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circuits Syst. I 31, 1055–1058 (1984)

    Article  MATH  Google Scholar 

  8. Lü, J.H., Chen, G.R.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)

    Article  MATH  Google Scholar 

  9. Lü, J.H., Chen, G.R., Cheng, D.Z., Čelikovský, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002)

    Article  MATH  Google Scholar 

  10. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MathSciNet  Google Scholar 

  11. Cafagna, D., Grassi, G.: New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring. Int. J. Bifurc. Chaos 13, 2889–2903 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y.X., Chen, G.R., Tang, W.K.S.: Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst. II 52, 204–207 (2005)

    Article  Google Scholar 

  13. Chen, Z.Q., Yang, Y., Qi, G.Y., Yuan, Z.Z.: A novel hyperchaos system only with one equilibrium. Phys. Lett. A 360, 696–701 (2007)

    Article  MathSciNet  Google Scholar 

  14. Gao, T.G., Chen, G.R., Chen, Z.Q., Cang, S.J.: The generation and circuit implementation of a new hyperchaos based upon Lorenz system. Phys. Lett. A 361, 78–86 (2007)

    Article  MATH  Google Scholar 

  15. Qi, G.Y., Van Wyk, M.A., Van Wyk, B.J., Chen, G.R.: On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008)

    Article  MathSciNet  Google Scholar 

  16. Qi, G.Y., Van Wyk, M.A., Van Wyk, B.J., Chen, G.R.: A new hyperchaotic system and its implementation. Chaos Solitons Fractals 40, 2544–2549 (2009)

    Article  Google Scholar 

  17. Wu, W.J., Chen, Z.Q., Yuan, Z.Z.: The evolution of a novel four-dimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyperchaos. Chaos Solitons Fractals 39, 2340–2356 (2009)

    Article  MathSciNet  Google Scholar 

  18. Wang, J.Z., Chen, Z.Q., Yuan, Z.Z.: The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system. Chin. Phys. 15, 1216–1225 (2006)

    Article  Google Scholar 

  19. Qi, G.Y., Chen, G.R., Du, S.Z., Chen, Z.Q., Yuan, Z.Z.: Analysis of a new chaotic system. Phys. A 352, 295–308 (2005)

    Google Scholar 

  20. Sparrow, C.: The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors. Springer, New York (1982)

    Google Scholar 

  21. Ueta, T., Chen, G.R.: Bifurcation analysis of Chen’s equation. Int. J. Bifurc. Chaos 10, 1917–1931 (2000)

    MathSciNet  Google Scholar 

  22. Gao, Q., Ma, J.H.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58, 209–216 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Feigenbaum, M.J.: Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25–52 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    Article  MathSciNet  Google Scholar 

  25. Grebogi, C., Ott, E., Romeiras, F., Yorke, J.A.: Critical exponents for crisis-induced intermittency. Phys. Rev. A 36, 5365–5380 (1987)

    Article  MathSciNet  Google Scholar 

  26. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yanchuk, S., Kapitaniak, T.: Chaos-hyperchaos transition in coupled Rössler systems. Phys. Lett. A 290, 139–144 (2001)

    Article  MATH  Google Scholar 

  28. Zhou, Q., Chen, Z.Q., Yuan, Z.Z.: Blowout bifurcation and chaos–hyperchaos transition in five-dimensional continuous autonomous systems. Chaos Solitons Fractals 40, 1012–1020 (2009)

    Article  Google Scholar 

  29. Wolf, A., Swift, J., Swinney, H., John, A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  30. Perez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995)

    Article  Google Scholar 

  31. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, W., Chen, Z. Hopf bifurcation and intermittent transition to hyperchaos in a novel strong four-dimensional hyperchaotic system. Nonlinear Dyn 60, 615–630 (2010). https://doi.org/10.1007/s11071-009-9619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9619-4

Navigation