Skip to main content
Log in

Vibration absorbers for a rotating flexible structure with cyclic symmetry: nonlinear path design

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper analytically investigates the nonlinear dynamics of order-tuned vibration absorbers applied to cyclic rotating flexible structures under traveling wave (TW) engine-order excitation. The primary cyclic structure is assumed to be governed by linear vibrations and the nonlinear absorber response arises from large amplitude kinematic effects. These dynamics are captured by a lumped-parameter model that consists of N blades with one blade mode and one absorber per blade, which are arranged with cyclic symmetry on a rotating disk. The governing equations of motion are formulated for arbitrary absorber paths to allow investigation of the absorber path design for nonlinear response. This paper extends previous work by the authors, which considered the linearized blade and absorber dynamics of a similar system. Several intriguing features of the dynamics were uncovered, most notably the existence of an absorber tuning range that avoids resonance at any rotation speed. Of particular interest is the existence and stability of the steady-state TW response to TW excitation, as experienced in turbomachinery, and how these are affected by selection of the absorber paths, which fix the linear and nonlinear tuning characteristics. It is shown that the TW response, which is unique for the linearized system, also exists for the weakly nonlinear model and can be captured by an equivalent two degree of freedom model obtained using the symmetry of the excitation and system response. The forced response exhibits the usual characteristics of a weakly nonlinear system, specifically, bistability and the attendant hysteresis near resonance. More significantly, it does not experience any additional instabilities associated with the symmetry. That is, the desired TW response is robust to nonlinear effects in the absorber, which allows use of the simple equivalent model for selection of absorber tuning parameters. For good performance and robustness, the linear absorber tuning should be in the “no-resonance zone” described by the linear theory and the absorber paths should have a slightly softening nonlinear characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewins, D.J.: Vibration characteristics of bladed disc assemblies. J. Mech. Eng. Sci. 15(3), 165–186 (1973)

    Article  Google Scholar 

  2. Olson, B.J.: Order-tuned vibration absorbers for systems with cyclic symmetry with applications to turbomachinery. Ph.D. dissertation, Michigan State University, East Lansing, MI (2006)

  3. Óttarsson, G.S.: Dynamic modeling and vibration analysis of mistuned bladed disks. Ph.D. dissertation, University of Michigan, Ann Arbor, MI (1994)

  4. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  5. Olson, B.J., Shaw, S.W., Pierre, C.: Vibration absorbers for a rotating flexible structure with cyclic symmetry: linear order tuning. In review

  6. Duffy, K.P., Bagley, R.L., Mehmed, O.: On a self-tuning impact vibration damper for rotating turbomachinery. In: 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, No. AIAA-2000-3100, Huntsville, AL (2000)

  7. Lee, C.T., Shaw, S.W.: On the counteraction of periodic torques in rotating systems using centrifugally driven vibration absorbers. J. Sound Vib. 191(5), 695–719 (1996)

    Article  Google Scholar 

  8. Newland, D.E.: Nonlinear aspects of the performance of centrifugal pendulum vibration absorbers. J. Eng. Ind. 86, 257–263 (1964)

    Google Scholar 

  9. Lee, C.T., Shaw, S.W., Coppola, V.T.: A subharmonic vibration absorber for rotating machinery. J. Vib. Acoust. 119, 590–595 (1997)

    Article  Google Scholar 

  10. Lee, C.T., Shaw, S.W.: The nonlinear dynamic response of paired centrifugal pendulum vibration absorbers. J. Sound Vib. 203(5), 731–743 (1997)

    Article  Google Scholar 

  11. Chao, C.P., Shaw, S.W., Lee, C.T.: Stability of the unison response for a rotating system with multiple tautochronic pendulum vibration absorbers. J. Appl. Mech. 64, 149–156 (1997)

    Article  MATH  Google Scholar 

  12. Chao, C.P., Lee, C.T., Shaw, S.W.: Non-unison dynamics of multiple centrifugal pendulum vibration absorbers. J. Sound Vib. 204(5), 769–794 (1997)

    Article  Google Scholar 

  13. Chao, C.P., Shaw, S.W.: The effects of imperfections on the performance of the subharmonic vibration absorber system. J. Sound Vib. 115(5), 1065–1099 (1998)

    Article  Google Scholar 

  14. Alsuwaiyan, A.S., Shaw, S.W.: Localization of free vibration modes in systems of nearly-identical vibration absorbers. J. Sound Vib. 228(3), 703–711 (1999)

    Article  Google Scholar 

  15. Chao, C.P., Shaw, S.W.: The dynamic response of multiple pairs of subharmonic pendulum vibration absorbers. J. Sound Vib. 231(2), 411–431 (2000)

    Article  Google Scholar 

  16. Alsuwaiyan, A.S., Shaw, S.W.: Performance and dynamic stability of general-path centrifugal pendulum vibration absorbers. J. Sound Vib. 252(5), 791–815 (2002)

    Article  Google Scholar 

  17. Ishida, Y., Inoue, T., Kagawa, T., Ueda, M.: Torsional vibration suppression by a centrifugal pendulum vibration absorber. In: Proceedings of the 2005 ASME Design Engineering Technical Conferences, 20th Biennial Conference on Mechanical Vibration and Noise, Long Beach, CA (2005)

  18. Hollkamp, J.J., Bagley, R.L., Gordon, R.W.: A centrifugal pendulum absorber for rotating, hollow engine blades. J. Sound Vib. 219(3), 539–549 (1999)

    Article  Google Scholar 

  19. Shaw, S.W., Pierre, C.: The dynamic response of tuned impact absorbers for rotating flexible structures. J. Comput. Nonlinear Dyn. 1, 13–24 (2006)

    Article  Google Scholar 

  20. Olson, B.J., Shaw, S.W., Pierre, C.: Order-tuned vibration absorbers for cyclic rotating flexible structures. In: Proceedings of the 2005 ASME Design Engineering Technical Conferences, 20th Biennial Conference on Mechanical Vibration and Noise, no. DETC2005-84641, Long Beach, CA (2005)

  21. Olson, B.J., Shaw, S.W.: Vibration absorbers for cyclic rotating flexible structures: Linear and nonlinear tuning. In: Proceedings of the 2008 ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, no. SMASIS08-632, Ellicott City, MD (2008)

  22. King, M.E., Vakakis, A.F.: A very complicated structure of resonances in a nonlinear system with cyclic symmetry: nonlinear forced linearization. Nonlinear Dyn. 7, 85–104 (1995)

    MathSciNet  Google Scholar 

  23. Vakakis, A.F.: Dynamics of a nonlinear periodic structure with cyclic symmetry. Acta Mech. 95, 197–226 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vakakis, A.F., Cetinkaya, C.: Mode localization in a class of multi-degree-of-freedom nonlinear systems with cyclic symmetry. SIAM J. Appl. Math. 53, 265–282 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vakakis, A.F., Nayfeh, T., King, M.: A multiple-scales analysis of nonlinear localized modes in a cyclic periodic system. J. Appl. Mech. 60, 388–397 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Samaranayake, S., Bajaj, A.K.: Subharmonic oscillations in harmonically excited mechanical systems with cyclic symmetry. J. Sound Vib. 206(1), 39–60 (1997)

    Article  MathSciNet  Google Scholar 

  27. Samaranayake, S., Bajaj, A.K., Nwokah, O.D.I.: Amplitude modulated dynamics and bifurcations in the resonant response of a structure with cyclic symmetry. Acta Mech. 109, 101–125 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Happawana, G.S., Bajaj, A.K., Nwokah, O.D.I.: A singular perturbation analysis of eigenvalue veering and modal sensitivity in perturbed linear periodic systems. J. Sound Vib. 160(2), 225–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Happawana, G.S., Nwakah, O.D.I., Bajaj, A.K., Azene, M.: Free and forced response of mistuned linear cyclic systems: a singular perturbation approach. J. Sound Vib. 211(5), 761–789 (1998)

    Article  Google Scholar 

  30. Tang, J., Wang, K.W.: Vibration delocalization of nearly periodic structures using coupled piezolelectric networks. J. Vib. Acoust. 125(1), 95–108 (2003)

    Article  Google Scholar 

  31. Tang, J., Wang, K.W.: Vibration control of rotationally periodic structures using passive piezoelectric networks and active compensation. J. Vib. Acoust. 121(4), 379–390 (1999)

    Article  Google Scholar 

  32. Duffy, K., Mehmed, O., Johnson, D.: Self-tuning impact dampers for fan and turbine blades. In: Proceedings of the 6th National Turbine Engine High Cycle Fatigue (HCF) Conference, Wright-Patterson AFB, OH (2001)

  33. Alsuwaiyan, A.S., Shaw, S.W.: Steady-state response of systems of nearly-identical torsional vibration absorbers. J. Vib. Acoust. 125(1), 80–87 (2003)

    Article  Google Scholar 

  34. Gozen, S., Olson, B.J., Shaw, S.W., Pierre, C.: Resonance suppression in multi-dof rotating flexible structures using order-tuned absorbers. In: Proceedings of the 2009 ASME International Design Engineering Technical Conferences, 22nd Biennial Conference on Mechanical Vibration and Noise, No. DETC2009-86287, San Diego, CA (2009)

  35. Davis, P.J.: Circulant Matrices, 2nd edn. Wiley, New York (1979)

    MATH  Google Scholar 

  36. Wagner, L.F., Griffin, J.H.: Forced harmonic response of grouped blade systems, part I: discrete theory. J. Eng. Gas Turbines Power 118, 130–136 (1996)

    Article  Google Scholar 

  37. Cai, C.W., Cheung, Y.K., Chan, H.C.: Uncoupling of dynamic equations for periodic structures. J. Sound Vib. 139(2), 253–263 (1990)

    Article  Google Scholar 

  38. Cai, C.W., Cheung, Y.K., Chan, H.C.: Dynamic response of infinite continuous beams subjected to a moving force—an exact method. J. Sound Vib. 123(3), 461–472 (1988)

    Article  Google Scholar 

  39. Shen, I.Y.: Vibration of rotationally periodic structures. J. Sound Vib. 172(4), 459–470 (1994)

    Article  MATH  Google Scholar 

  40. Brown, J.W., Churchill, R.V.: Complex Variables and Applications, 6th edn. McGraw-Hill, New York (1996)

    Google Scholar 

  41. Perkins, N.C., Mode, J.C.D.: Comments on curve veering in eigenvalue problems. J. Sound Vib. 106(3), 451–463 (1986)

    Article  Google Scholar 

  42. Pierre, C.: Mode localization and eigenvalue loci veering phenomena in disordered structures. J. Sound Vib. 126(3), 485–502 (1988)

    Article  Google Scholar 

  43. Castanier, M.P., Pierre, C.: Using intentional mistuning in the design of turbomachinery rotors. AIAA J. 40(10), 2077–2086 (2002)

    Article  Google Scholar 

  44. Castanier, M.P., Pierre, C.: Consideration on the benefits of intentional blade mistuning for the forced response of turbomachinery rotors. Anal. Des. Issues Mod. Aerospace Veh. 55, 419–425 (1997)

    Google Scholar 

  45. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983)

    MATH  Google Scholar 

  46. Wiggins, S.: Introduction to applied nonlinear dynamical systems and chaos. In: Texts in Applied Mathematics, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  47. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jersey (2002)

    MATH  Google Scholar 

  48. Ashwin, P., Swift, J.W.: The dynamics of n weakly coupled identical oscillators. J. Nonlinear Sci. 2, 69–108 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Folley, C., Bajaj, A.: The dynamics of a cyclic ring of coupled duffing oscillators. In: ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (2005)

  50. Folley, C.N.: Bifurcation and symmetry in cyclic structures. Ph.D. dissertation, Purdue University (1999)

  51. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  Google Scholar 

  52. Hodges, C.H.: Confinement of vibration by structural irregularity. J. Sound Vib. 82(3), 411–424 (1982)

    Article  MathSciNet  Google Scholar 

  53. Wei, S.T., Pierre, C.: Localization phenomena in mistuned assemblies with cyclic symmetry, part I: free vibrations. J. Vib. Acoust. Stress Reliab. Des. 110, 429–438 (1988)

    Google Scholar 

  54. Wei, S.T., Pierre, C.: Localization phenomena in mistuned assemblies with cyclic symmetry, part II: forced vibrations. J. Vib. Acoust. Stress Reliab. Des. 110, 439–449 (1988)

    Google Scholar 

  55. Whitehead, D.S.: Effect of mistuning on the vibration of turbomachine blades induced by wakes. J. Mech. Eng. Sci. 8(1), 15–21 (1966)

    Article  Google Scholar 

  56. Ewins, D.J.: The effect of detuning upon the forced vibrations of bladed disks. J. Sound Vib. 9(1), 65–79 (1969)

    Article  Google Scholar 

  57. Dye, R.C.F., Henry, T.A.: Vibration amplitudes of compressor blades resulting from scatter in blade natural frequencies. J. Eng. Power 91, 182–188 (1969)

    Google Scholar 

  58. MacBain, J.C., Whaley, P.W.: Maximum resonant response of mistuned bladed disks. J. Vib. Acoust. Stress Reliab. Des. 106(2), 218–223 (1984)

    Google Scholar 

  59. Whitehead, D.S.: The maximum factor by which forced vibration of blades can increase due to mistuning. J. Eng. Gas Turbines Power 120(1), 115–119 (1998)

    Article  Google Scholar 

  60. Bladh, R., Pierre, C., Castanier, M.P., Kruse, M.J.: Dynamic response predictions for a mistuned industrial turbomachinery rotor using reduced-order modeling. J. Eng. Gas Turbines Power 124(2), 311–324 (2002)

    Article  Google Scholar 

  61. McWeeny, R.: Topic 1: mathematical techniques. In: Jones, H. (ed.) Symmetry: An Introduction to Group Theory and its Applications. The International Encyclopedia of Physical Chemistry and Chemical Physics, vol. 3. Macmillan, New York (1963)

    Google Scholar 

  62. Fässler, A., Stiefel, E.: Group Theoretical Methods and their Applications. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  63. Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Graduate Texts in Mathematics, vol. 203, 2nd edn. Springer, New York (2001)

    MATH  Google Scholar 

  64. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. I. Applied Mathematical Sciences, vol. 51. Springer, New York (1988)

    Google Scholar 

  65. Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory, vol. II. Applied Mathematical Sciences, vol. 69. Springer, New York (1988)

    Google Scholar 

  66. Shapiro, B.: Solving for mistuned forced response by symmetry. J. Propuls. Power 15(2), 310–325 (1999)

    Article  Google Scholar 

  67. Shapiro, B.: Passive control of flutter and forced response in bladed disks via mistuning. Ph.D. dissertation, California Institute of Technology, Pasadena, CA, May (1999)

  68. Shapiro, B.: A symmetry approach to extension of flutter boundaries via mistuning. J. Propuls. Power 14(3), 354–366 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, B.J., Shaw, S.W. Vibration absorbers for a rotating flexible structure with cyclic symmetry: nonlinear path design. Nonlinear Dyn 60, 149–182 (2010). https://doi.org/10.1007/s11071-009-9587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9587-8

Keywords

Navigation