Skip to main content

Advertisement

Log in

An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators

  • Review Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. The pseudoinverse control is not repeatable, causing drift in joint space which is undesirable for physical control. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms, leading to an optimization criterion for repeatable control of redundant manipulators, and avoiding the joint angle drift problem. Computer simulations performed based on redundant and hyper-redundant planar manipulators show that, when the end-effector traces a closed path in the workspace, the robot returns to its initial configuration. The solution is repeatable for a workspace with and without obstacles in the sense that, after executing several cycles, the initial and final states of the manipulator are very close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nenchev, D.N., Tsumaki, Y.: Motion analysis of a kinematically redundant seven-DOF manipulator under the singularity-consistent method. In: Proc. of the 2003 IEEE Int. Conf. on Robotics and Automation, pp. 2760–2765 (2003)

  2. Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robotics Res. 12, 1–19 (1993)

    Article  Google Scholar 

  3. Baillieul, J., Hollerbach, J., Brockett, R.: Programming and control of kinematically redundant manipulators. In: Proc. of the 23rd IEEE Conf. on Decision and Control, pp. 768–774 (1984)

  4. Klein, C.A., Huang, C.-H.: Review of pseudoinverse control for use with kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. 13(3), 245–250 (1983)

    Google Scholar 

  5. Roberts, R.G., Maciejewski, A.: Repeatable generalized inverse control strategies for kinematically redundant manipulators. IEEE Trans. Autom. Control 38(5), 689–699 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Klein, C.A., Ahmed, S.: Repeatable pseudoinverse control for planar kinematically redundant manipulators. IEEE Trans. Syst. Man Cybern. 25(12), 1657–1662 (1995)

    Article  Google Scholar 

  7. Zhang, Y., Zhu, H., Lv, X., Li, K.: Joint angle drift problem of PUMA560 robot arm solved by a simplified LVI-based primal-dual neural network. In: Proc. of the IEEE Int. Conf. on Industrial Technology, pp. 1–26 (2008)

  8. Zhang, Y., Lv, X., Li, Z., Yang, Z., Zhu, H.: Effective neural remedy for drift phenomenon of planar three-link robot arm using quadratic performance index. Electron. Lett. 44(6), 436–437 (2008). doi:10.1049/el:20080455

    Google Scholar 

  9. Zhang, Y., Tan, Z., Yang, Z., Lv, X.: A dual neural network applied to drift-free resolution of five-link planar robot arm. In: Proc. of the 2008 IEEE International Conference on Information and Automation, pp. 1274–1279 (2008)

  10. Baillieul, J.: Kinematic programming alternatives for redundant manipulators. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 722–728 (1985)

  11. Baker, D.R., Wampler II, C.W.: On the inverse kinematics of redundant manipulators. Int. J. Robotics Res. 7(211), 3–21 (1988)

    Google Scholar 

  12. Park, K.-C., Chang, P.-H., Lee, S.: A new kind of singularity in redundant manipulation: semi-algorithmic singularity. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 1979–1984 (2002)

  13. Park, J., Chung, W.-K., Youm, Y.: Characteristics of optimal solutions in kinematics resolutions of redundancy. IEEE Trans. Robotics Autom. 12(3), 471–478 (1996)

    Article  Google Scholar 

  14. Goldenberg, D.E.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  15. Parker, J.K., Khoogar, A.R., Goldberg, D.E.: Inverse kinematics of redundant robots using genetic algorithms. In: Proc. of the 1989 IEEE Int. Conf. on Robotics and Automation, pp. 271–276 (1989)

  16. Arakawa, T., Kubota, N., Fukuda, T.: Virus-evolutionary genetic algorithm with subpopulations: application to trajectory generation of redundant manipulator through energy optimization. In: Proc. of the 1996 IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 14–17 (1996)

  17. Kubota, N., Arakawa, T., Fukuda, T., Shimojima, K.: Trajectory generation for redundant manipulator using virus evolutionary genetic algorithm. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 205–210 (1997)

  18. de la Cueva, V., Ramos, F.: Cooperative genetic algorithms: a new approach to solve the path planning problem for cooperative robotic manipulators sharing the same work space. In: Proc. of the IEEE/RSJ Int. Conference on Intelligent Robots and Systems, pp. 267–272 (1998)

  19. Nishimura, T., Sugawara, K., Yoshihara, I., Abe, K.: A motion planning method for a hyper multi-joint manipulator using genetic algorithm. In: Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 645–650 (1999)

  20. McAvoy, B., Sangolola, B.: Optimal trajectory generation for redundant planar manipulators. In: Proc. of the IEEE Int. Conf. on Systems, Man, and Cybernetics, pp. 3241–3246 (2000)

  21. Peng, Y., Wei, W.: A new trajectory planning method of redundant manipulator based on adaptive simulated annealing genetic algorithm (ASAGA). In: Proc. of the IEEE Int. Conf. on Computational Intelligence and Security, pp. 262–265 (2006)

  22. Zhang, Y., Sun, Z., Yang, T.: Optimal motion generation of a flexible macro–micro manipulator system using genetic algorithm and neural network. In: Proc. of the 2006 IEEE Conf. on Robotics, Automation and Mechatronics, pp. 1–6 (2006)

  23. Pires, E.J.S., Machado, J.A.T., Oliveira, P.B.M.: Manipulator trajectory planning using a MOEA. Appl. Soft Comput. J. 7(3), 659–667 (2007)

    Article  Google Scholar 

  24. Whitney, D.E.: Resolved motion rate control of manipulators and human prostheses. IEEE Trans. Man Mach. Syst. 10(2), 47–53 (1969)

    Article  MathSciNet  Google Scholar 

  25. Siciliano, B.: Kinematic control of redundant robot manipulators: a tutorial. J. Intell. Robotic Syst. 3, 201–212 (1990)

    Article  Google Scholar 

  26. Marcos, M.G., Duarte, F.B., Machado, J.A.T.: Complex dynamics in the trajectory control of redundant manipulators. Trans. Nonlinear Sci. Complex. (World Scientific) 1, 134–143 (2007)

    Article  Google Scholar 

  27. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1992) (2nd edn.: MIT Press, Cambridge)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria da Graça Marcos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcos, M.d.G., Machado, J.A.T. & Azevedo-Perdicoúlis, TP. An evolutionary approach for the motion planning of redundant and hyper-redundant manipulators. Nonlinear Dyn 60, 115–129 (2010). https://doi.org/10.1007/s11071-009-9584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9584-y

Navigation