Skip to main content
Log in

Global asymptotical stability and generalized synchronization of phase synchronous dynamical networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper examines the global asymptotical stability of the phase synchronous dynamical networks composed by a class of nonlinear pendulum-like systems with multiple equilibria. Sufficient conditions for the determination of global asymptotical stability are given in terms of linear matrix inequalities (LMIs). Furthermore, a concept of generalized synchronization is introduced, and the criterion of which is proposed in a simple form. Those results are of particular convenience for networks that possess large numbers of nodes, and they can be used to discuss controller design problems as well. Numerical simulations and analytical results are in excellent agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  2. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002)

    Article  MathSciNet  Google Scholar 

  3. Wang, X.F.: Complex networks: topology, dynamics, and synchronization. Int. J. Bifurc. Chaos 5(12), 885–916 (2002)

    Google Scholar 

  4. Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89(5), 054101 (2002)

    Article  Google Scholar 

  5. Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore (2006)

    Google Scholar 

  6. Li, C.G., Chen, G.R.: Synchronization in general complex dynamical networks with coupling delays. Physica A 343, 263–277 (2004)

    Article  MathSciNet  Google Scholar 

  7. Wang, X.F., Chen, G.R.: Pinning control of scale-free networks. Physica A 310, 521–531 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang, X.F., Chen, G.R.: Synchronization in scale-free networks: robustness and fragility. IEEE Trans. CAS-1 49, 54–62 (2002)

    Article  Google Scholar 

  9. Liu, X., Wang, J.Z., Huang, L.: Global synchronization for a class of dynamical complex networks. Physica A 386, 543–556 (2007)

    Article  Google Scholar 

  10. Xu, S.Y., Yang, Y.: Synchronization for a class of complex dynamical networks with time-delay. Commun. Nonlinear Sci. Numer. Simul. 14, 3230–3238 (2009)

    Article  MathSciNet  Google Scholar 

  11. Leonov, G.A., Burkin, I.M., Shepeljavyi, A.I.: Frequency Methods in Oscillation Theory. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  12. Leonov, G.A., Reitmann, V., Smirnova, V.B.: Non-local methods for pendulum-like feedback systems. Teubner-Texte zur Mathematik Bd. 132, B.G., Teubner Stuttgart-Leipzig (1992)

  13. Leonov, G.A., Ponomarenko, D.V., Smirnova, V.B.: Frequency-Domain Methods for Nonlinear Analysis. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  14. Rantzer, A.: On the Kalman–Yakubovich–Popov lemma. Syst. Control Lett. 28, 7–10 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Yang, Y., Huang, L.: H controller synthesis for pendulum-like systems. Syst. Control Lett. 50, 263–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Duan, Z.S., Wang, J.Z., Huang, L.: Criteria for dichotomy and gradient-like behavior of a class of nonlinear systems with multiple equilibria. Automatica 43, 1583–1589 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yang, Y., Fu, R., Huang, L.: Robust analysis and synthesis for a class of uncertain nonlinear systems with multiple equilibria. Syst. Control Lett. 53, 89–105 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Duan, Z.S., Wang, J.Z., Huang, L.: Input and output coupled nonlinear systems. IEEE Trans. CAS-1 52(3), 567–575 (2007)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y., Duan, Z.S., Huang, L.: Global convergence of a class of discrete-time interconnected pendulum-like systems. J. Optim. Theory Appl. 133, 257–273 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  21. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge Univ. Press, Cambridge (1985)

    MATH  Google Scholar 

  22. Wu, C.W.: Application of Kronecker products to the analysis of systems with uniform linear coupling. IEEE Trans. CAS-1 42(10), 775–778 (1995)

    Article  Google Scholar 

  23. Balakrishnan, V., Vandenberghe, L.: Semidefinite programming duality and linear time-invariant systems. IEEE Trans. Autom. Control. 48, 30–41 (2003)

    Article  MathSciNet  Google Scholar 

  24. Lu, P.L., Yang, Y., Li, Z.K., Huang, L.: Decentralized dynamic output feedback for globally asymptotic stabilization of a class of dynamic networks. Int. J. Control 81(7), 1054–1061 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Boyd, S., ELGhaoui, L., Feron, E., Balakrishnam, V.: Linear Matrix Inequalities in Systems and Control. SIAM, Philadelphia (1994)

    Google Scholar 

  26. Gardner, F.M.: Phaselock Techniques. Wiley, New York (1979)

    Google Scholar 

  27. Ware, K.M., Lee, H.S., Sodini, C.G.: A 200-mhz cmos phase-locked loop with dual phase detectors. IEEE J. Solid-State Circ. 24, 1560–1568 (1989)

    Article  Google Scholar 

  28. Abramovitch, D.Y.: Lyapunov redesign of analog phase-lock loops. IEEE Trans. Commun. 38, 2197–2202 (1990)

    Article  Google Scholar 

  29. Buckwalter, J., York, R.A.: Time delay considerations in high-frequency phase-locked loop. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 181–184 (2000)

  30. Harb, B.A., Harb, A.M.: Chaos and bifurcation in a third-order phase locked loop. Chaos Soliton Fractals 19, 667–672 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiYun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Yang, Y. Global asymptotical stability and generalized synchronization of phase synchronous dynamical networks. Nonlinear Dyn 59, 485–496 (2010). https://doi.org/10.1007/s11071-009-9555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9555-3

Keywords

Navigation