Skip to main content
Log in

Nonstationary probability densities of strongly nonlinear single-degree-of-freedom oscillators with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The approximate nonstationary probability density of a nonlinear single-degree-of-freedom (SDOF) oscillator with time delay subject to Gaussian white noises is studied. First, the time-delayed terms are approximated by those without time delay and the original system can be rewritten as a nonlinear stochastic system without time delay. Then, the stochastic averaging method based on generalized harmonic functions is used to obtain the averaged Itô equation for amplitude of the system response and the associated Fokker–Planck–Kolmogorov (FPK) equation governing the nonstationary probability density of amplitude is deduced. Finally, the approximate solution of the nonstationary probability density of amplitude is obtained by applying the Galerkin method. The approximate solution is expressed as a series expansion in terms of a set of properly selected basis functions with time-dependent coefficients. The proposed method is applied to predict the responses of a Van der Pol oscillator and a Duffing oscillator with time delay subject to Gaussian white noise. It is shown that the results obtained by the proposed procedure agree well with those obtained from Monte Carlo simulation of the original systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caughey, T.K.: Nonlinear theory of random vibration. Adv. Appl. Mech. 11, 209–253 (1971)

    Article  Google Scholar 

  2. Caughey, T.K., Dienes, J.K.: Analysis of a nonlinear first-order system with a white noise input. J. Appl. Phys. 32, 2476–2479 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer, Berlin (1983)

    MATH  Google Scholar 

  4. Andronov, A.A., Pontryagin, L.S., Witt, A.A.: On the statistical investigation of dynamical systems. J. Exp. Theor. Phys. 3, 165–180 (1933) (in Russian)

    Google Scholar 

  5. Kramers, H.A.: Brownian motion in a field of force and diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caughey, T.K., Ma, F.: The steady-state response of a class of dynamical systems to stochastic excitation. ASME J. Appl. Mech. 49, 629–632 (1982)

    MATH  MathSciNet  Google Scholar 

  7. Dimentberg, M.F.: An exact solution to a certain non-linear random vibration problem. Int. J. Non-Linear Mech. 17, 231–236 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Yong, Y., Lin, Y.K.: Exact stationary-response solution for second order nonlinear systems under parametric and external white-noise excitations. ASME J. Appl. Mech. 54, 414–418 (1987)

    MATH  MathSciNet  Google Scholar 

  9. Lin, Y.K., Cai, G.Q.: Exact stationary-response solution for second order nonlinear systems under parametric and external excitations. Part II. ASME J. Appl. Mech. 55, 702–705 (1988)

    MATH  MathSciNet  Google Scholar 

  10. Zhu, W.Q., Yang, Y.Q.: Exact stationary solutions of stochastically excited and dissipated integrable Hamiltonian systems. ASME J. Appl. Mech. 63, 493–500 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Roberts, J.B.: Energy method for nonlinear systems with non-white excitation. In: Hennig, K. (ed.) Proceedings of the IUTAM Symposium on Random Vibrations and Reliability, pp. 285–294. Akademie, Berlin (1983)

    Google Scholar 

  12. Zhu, W.Q.: Nonlinear stochastic dynamics and control in Hamiltonian formulation. Appl. Mech. Rev. 59, 230–248 (2006)

    Article  Google Scholar 

  13. Zhu, W.Q., Huang, Z.L., Suzuki, Y.: Response and stability of strongly non-linear oscillators under wide-band random excitation. Int. J. Non-Linear Mech. 36, 1235–1250 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Spanos, P.D.: Non-stationary random vibration of a linear structure. Int. J. Solids Struct. 14, 861–867 (1978)

    Article  MATH  Google Scholar 

  15. Iwan, W.D., Spanos, P.D.: Response envelope statistics for nonlinear oscillators with random excitation. ASME J. Appl. Mech. 45, 170–174 (1978)

    MATH  Google Scholar 

  16. Spanos, P.D.: Stochastic analysis of oscillators with non-linear damping. Int. J. Non-Linear Mech. 13, 249–259 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Spanos, P.D.: A method for analysis of non-linear vibrations caused by modulated random excitation. Int. J. Non-Linear Mech. 16, 1–11 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  18. Spanos, P.D., Sofi, A., Di Paola, M.: Nonstationary response envelope probability densities of nonlinear oscillators. ASME J. Appl. Mech. 74, 315–324 (2007)

    Article  MATH  Google Scholar 

  19. Niculescu, S.I.: Delay Effects on Stability: A Roust Control Approach. Lecture Notes in Control and Information Sciences, vol. 269. Springer, Berlin (2001)

    Google Scholar 

  20. MacDonald, N.: Biological Delay Systems. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  21. Malek-Zavarej, M., Jamshidi, M.: Time-Delay Systems, Optimization and Applications. North-Holland, New York (1987)

    Google Scholar 

  22. Hu, H.Y., Wang, Z.H.: Dynamics of Controlled Mechanical Systems with Delayed Feedback. Springer, Berlin (2002)

    MATH  Google Scholar 

  23. Agrawal, A.K., Yang, J.N.: Effect of fixed time delay on stability and performance of actively controlled civil engineering structures. Earthquake Eng. Struct. Dyn. 26, 1169–1185 (1997)

    Article  Google Scholar 

  24. Pu, J.P.: Time delay compensation in active control of structure. ASCE J. Eng. Mech. 124, 1018–1028 (1998)

    Article  Google Scholar 

  25. Swain, A.K., Mendes, E.M.A.M., Nguang, S.K.: Analysis of the effects of time delay in nonlinear systems using generalised frequency response functions. J. Sound Vib. 294, 341–354 (2006)

    Article  Google Scholar 

  26. Grigoriu, M.: Control of time delay linear systems with Gaussian white noise. Probab. Eng. Mech. 12, 89–96 (1997)

    Article  Google Scholar 

  27. Di Paola, M., Pirrotta, A.: Time delay induced effects on control of linear systems under random excitation. Probab. Eng. Mech. 16, 43–51 (2001)

    Article  Google Scholar 

  28. Bilello, C., Di Paola, M., Pirrotta, A.: Time delay induced effects on control of non-linear systems under random excitation. Meccanica 37, 207–220 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Elbeyli, O., Sun, J.Q., Ünal, G.: A semi-discretization method for delayed stochastic systems. Commun. Nonlinear Sci. Numer. Simul. 10, 85–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pirrotta, A., Zingales, M.: Stochastic analysis of dynamical systems with delayed control forces. Commun. Nonlinear Sci. Numer. Simul. 11, 483–498 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Guillouzic, S., L’Heureux, I., Longtin, A.: Small delay approximation of stochastic delay differential equations. Phys. Rev. E 59, 3970–3982 (1999)

    Article  Google Scholar 

  32. Frank, T.D., Beek, P.J.: Stationary solutions of linear stochastic delay differential equations: applications to biological systems. Phys. Rev. E 64, 021917 (2001)

    Article  Google Scholar 

  33. Liu, Z.H., Zhu, W.Q.: Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control. J. Sound Vib. 299, 178–195 (2007)

    Article  MathSciNet  Google Scholar 

  34. Xu, Z., Chung, Y.K.: Averaging method using generalized harmonic functions for strongly non-linear oscillators. J. Sound Vib. 174, 563–576 (1994)

    Article  MATH  Google Scholar 

  35. Khasminskii, R.Z.: On the averaging principle for Itô stochastic differential equations. Kibernetika 4, 260–279 (1968) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X.L., Huang, Z.L. Nonstationary probability densities of strongly nonlinear single-degree-of-freedom oscillators with time delay. Nonlinear Dyn 59, 195–206 (2010). https://doi.org/10.1007/s11071-009-9532-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9532-x

Keywords

Navigation