Skip to main content
Log in

A new model reduction method for nonlinear dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present research work proposes a new systematic approach to the problem of model-reduction for nonlinear dynamical systems. The formulation of the problem is conveniently realized through a system of singular first-order quasi-linear invariance partial differential equations (PDEs), and a rather general explicit set of conditions for solvability is derived. In particular, within the class of analytic solutions, the aforementioned set of conditions guarantees the existence and uniqueness of a locally analytic solution. The solution to the above system of singular PDEs is then proven to represent the slow invariant manifold of the nonlinear dynamical system under consideration exponentially attracting all dynamic trajectories. As a result, an exact reduced-order model for the nonlinear system dynamics is obtained through the restriction of the original system dynamics on the aforementioned slow manifold. The local analyticity property of the solution’s graph that corresponds to the system’s slow manifold enables the development of a series solution method, which allows the polynomial approximation of the system dynamics on the slow manifold up to the desired degree of accuracy and can be easily implemented with the aid of a symbolic software package such as MAPLE. Finally, the proposed approach and method is evaluated through an illustrative biological reactor example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  2. Astolfi, A., Ortega, R.: Immersion and invariance: A new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Automat. Contr. 48, 590 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bykov, V., Goldfarb, I., Gol’dshtein, V., Maas, U.: On a modified version of ILDM approach: Asymptotic analysis based on integral manifolds. IMA J. Appl. Math. 71, 359 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chiavazzo, E., Gorban, A.N., Karlin, I.V.: Comparison of invariant manifolds for model reduction in chemical kinetics. Commun. Comput. Phys. 2, 964 (2007)

    MathSciNet  Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Wiley, New York (1962)

    MATH  Google Scholar 

  6. Cox, S.M., Roberts, A.J.: Initial conditions for models of dynamical systems. Physica D 85, 126 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  8. Foias, C., Sell, R., Titi, E.S.: Exponential tracking and approximation of inertial manifolds for dissipative equations. J. Dyn. Differ. Equ. 1, 199 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gantmacher, F.R.: The Theory of Matrices. Chelsea, New York (1960)

    Google Scholar 

  10. Gorban, A.N., Karlin, I.V.: Methods of invariant manifolds and regularization of acoustic spectra. Trans. Theor. Stat. Phys. 23, 559 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gorban, A.N., Karlin, I.V., Zmievskii, V.B., Dymova, S.V.: Reduced description in the reaction kinetics. Physica A 275, 361 (2000)

    Article  Google Scholar 

  12. Gorban, A.N., Karlin, I.V.: Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 58, 4751 (2003)

    Article  Google Scholar 

  13. Gorban, A.N., Karlin, I.V., Zinovyev, A.Y.: Constructive methods of invariant manifolds for kinetic problems. Phys. Rep. 396, 197 (2004)

    Article  MathSciNet  Google Scholar 

  14. Gorban, A.N., Karlin, I.V.: Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics, vol. 660. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  15. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  16. Jin, S., Slemrod, M.: Regularization of the Burnett equations for rapid granular flows via relaxation. Physica D 150, 207 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kaper, T., Koppel, N., Jones, C.K.R.T.: Tracking invariant manifolds up to exponentially small errors. SIAM J. Math. Anal. 27, 558 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kazantzis, N.: Singular PDEs and the problem of finding invariant manifolds for nonlinear dynamical systems. Phys. Lett. A 272, 257 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kazantzis, N., Good, T.: Invariant manifolds and the calculation of the long-term asymptotic response of nonlinear processes using singular PDEs. Comput. Chem. Eng. 26, 999 (2002)

    Article  Google Scholar 

  20. Kokotovic, P.V., Khalil, H.K., O’Reilly, J.O.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, San Diego (1986)

    MATH  Google Scholar 

  21. Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461 (1994)

    Article  Google Scholar 

  22. Li, G., Rabitz, H.: A general analysis of exact nonlinear lumping in chemical kinetics. Chem. Eng. Sci. 49, 343 (1994)

    Article  Google Scholar 

  23. Lyapunov, A.M.: The General Problem of the Stability of Motion. Taylor & Francis, London (1992)

    MATH  Google Scholar 

  24. Maas, U., Pope, S.B.: Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239 (1992)

    Article  Google Scholar 

  25. MacKay, R.S.: Slow manifolds. In: Dauxois, T., Litvak-Hinenzon, A., MacKay, R.S., Spanoudaki (eds.) Energy Localisation and Transfer, p. 149. World Scientific, Singapore (2004)

    Google Scholar 

  26. Moore, G.: Geometric methods for computing invariant manifolds. Appl. Numer. Math. 17, 319 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  27. Roberts, A.J.: Low-dimensional modelling of dynamics via computer algebra. Comput. Phys. Commun. 100, 215 (1997)

    Article  MATH  Google Scholar 

  28. Roussel, M.: Forced-convergence iterative schemes for the approximation of invariant manifolds. J. Math. Chem. 21, 385 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. Roussel, M., Fraser, S.J.: Invariant manifold methods for metabolic model reduction. Chaos 11, 196 (2001)

    Article  MATH  Google Scholar 

  30. Vora, N., Contou-Carrere, M.N., Daoutidis, P.: Model reduction of multiple time-scale processes in non-standard singularly perturbed form. In: Gorban, A.N., (eds.) Coarse Graining and Model Reduction Approaches for Multiscale Phenomena. Lecture Note Series in Complexity. Springer, Berlin (2006)

    Google Scholar 

  31. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    MATH  Google Scholar 

  32. Zagaris, A., Kaper, H.G., Kaper, T.J.: Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14, 59 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zmievski, V.B., Karlin, I.V., Deville, M.: The universal limit in dynamics of dilute polymeric solutions. Physica A 275, 152 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Kazantzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazantzis, N., Kravaris, C. & Syrou, L. A new model reduction method for nonlinear dynamical systems. Nonlinear Dyn 59, 183–194 (2010). https://doi.org/10.1007/s11071-009-9531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9531-y

Keywords

Navigation