Skip to main content
Log in

Effects on the chaotic system of fractional order PI α controller

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

When a Lur’e-type system which cannot exhibit chaotic behavior and whose linear part is of a second order, is tried to be controlled by an integer order controller, chaotic behaviors can occur depending on the controller parameters. In this article, in the case when a fractional order PI α is chosen, provided that the controller parameters remain unchanged, the effect of the integral order α for the interval 0<α<1 has been investigated. It has been shown through two examples that depending on the integral order α, the fractional order PI α controller prevents the chaotic behavior by releasing the extra dynamics that was loaded onto the system by the integer order PI controller. To determine at which α parameter the system exhibits chaotic behavior, the frequency domain approach based chaos prediction method—Genesio–Tesi conjecture—has been used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus, Cambridge (1994)

    Google Scholar 

  2. Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Yang, T., Chua, L.O.: Secure communication via chaotic parameter modulation. IEEE Trans. CAS-I 43(9), 817–819 (1996)

    Article  Google Scholar 

  4. Bai, E.W., Lonngren, K.E., Uçar, A.: Secure communication via multiple parameter modulation in a delayed chaotic system. Chaos Solitons Fractals 23, 1071–1076 (2005)

    MATH  Google Scholar 

  5. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  6. Piccardi, C.: Bifurcations of limit cycles in periodically forced nonlinear systems: The harmonic balance approach. IEEE Trans. CAS-I 41(4), 315–320 (1994)

    Article  MathSciNet  Google Scholar 

  7. Bonani, F., Gilli, M.: Analysis of stability and bifurcations of limit cycles in Chua’s circuit through the harmonic-balance approach. IEEE Trans. CAS-I 46(8), 881–890 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Genesio, R., Tesi, A.: Chaos prediction in nonlinear feedback systems. IEE Proc. D 138(4), 313–320 (1991)

    MATH  Google Scholar 

  9. Genesio, R., Tesi, A., Villoresi, F.: A frequency approach for analyzing and controlling chaos in nonlinear circuits. IEEE Trans. CAS-I 40(11), 819–828 (1993)

    Article  MATH  Google Scholar 

  10. Çelik, V.: The prediction of chaotic behaviors in feedback control systems. M.Sc. Thesis, Firat University, Elazig-Turkey (2004)

  11. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  12. Tustin, A., Allason, J.T., Layton, J.M., Jakeways, R.J.: The design of systems for automatic control of the position of massive object. Proc. Inst. Electr. Eng. 105(C-1), 1–57 (1958)

    Google Scholar 

  13. Manabe, S.: The non-integer integral and its application to control systems. J. IEE Jpn. 80(860), 589–597 (1960) (in Japanese). Shorter English version in ETJ Jpn. 6(3/4), 83–87 (1961)

    Google Scholar 

  14. Axtell, M., Bise, M.E.: Fractional calculus applications in control systems. In: IEEE Nat. Aerospace and Electronics Conference, New York (1990)

  15. Vinagre, B.M., Petráš, I., Podlubny, I., Chen, Y.Q.: Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dyn. 29(1–4), 269–279 (2002). doi:10.1023/A:1016504620249

    Article  MATH  Google Scholar 

  16. Manabe, S.: A suggestion of fractional-order controller for flexible spacecraft attitude control. Nonlinear Dyn. 29(1–4), 251–268 (2002). doi:10.1023/A:1016566017098

    Article  MATH  Google Scholar 

  17. Valério, D., Sá da Costa, J.: Time-domain implementation of fractional order controllers. IEE Proc. D 152(5), 539–552 (2005)

    Google Scholar 

  18. Ladaci, S., Charef, A.: On fractional adaptive control. Nonlinear Dyn. 43(4), 365–378 (2006). doi:10.1007/s11071-006-0159-x

    Article  MATH  MathSciNet  Google Scholar 

  19. Podlubny, I., Dorcak, L., Kostial, I.: On fractional derivatives, fractional-order dynamic system and PI λ D μ-controllers. Conference on Decision & Control, San Diego (1997)

  20. Podlubny, I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999). doi:10.1109/9.739144

    Article  MATH  MathSciNet  Google Scholar 

  21. Monje, C.A., Calderon, A.J., Vinagre, B.M., Chen, Y., Feliu, V.: On fractional PI λ controllers: Some tuning rules for robustness to plant uncertainties. Nonlinear Dyn. 38(1–2), 369–381 (2004). doi:10.1007/s11071-004-3767-3

    Article  MATH  Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  23. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992). doi:10.1109/9.159595

    Article  MATH  MathSciNet  Google Scholar 

  24. Özdemir, N., Agrawal, O.P., İskender, B.B., Karadeniz, D.: Fractional optimal control of a 2-dimensional distributed system using eigenfunctions. Nonlinear Dyn. 55(3), 251–260 (2009). doi:10.1007/s11071-008-9360-4

    Article  MATH  Google Scholar 

  25. Hamamci, S.E.: Stabilization using fractional-order PI and PID controllers. Nonlinear Dyn. 51(1–2), 329–343 (2008). doi:10.1007/s11071-007-9214-5

    MATH  Google Scholar 

  26. Zong, K., Li, S., Lin, X.: The Application of Fractional-Order PI Control Algorithm to the PMSM Speed-Adjusting System. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  27. Li, W.: Design and Implement of Neural Network Based Fractional-Order Controller. Springer, Berlin/Heidelberg (2007)

    Google Scholar 

  28. Ma, C., Hori, Y.: Fractional order control and its application of PI α D controller for robust two-inertia speed control. IPEMC 3, 1477–1482 (2004)

    Google Scholar 

  29. Gibson, J.E.: Nonlinear Automatic Control. McGraw-Hill, New York (1963)

    Google Scholar 

  30. Vidyasagar, M.: Nonlinear Systems Analysis. Prentice Hall, New Jersey (1978)

    Google Scholar 

  31. Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. CAS-I 42(8), 485–490 (1995). doi:10.1109/81.404062

    Article  Google Scholar 

  32. Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004). doi:10.1016/j.physa.2004.04.113

    Article  MathSciNet  Google Scholar 

  33. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993). doi:10.1016/0167-2789(93)90009-P

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vedat Çelik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çelik, V., Demir, Y. Effects on the chaotic system of fractional order PI α controller. Nonlinear Dyn 59, 143–159 (2010). https://doi.org/10.1007/s11071-009-9528-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9528-6

Keywords

Navigation