Skip to main content
Log in

Dynamics of an inertial two-neuron system with time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we considered a delayed differential equation modeling two-neuron system with both inertial terms and time delay. By analyzing the distribution of the eigenvalues of the corresponding transcendental characteristic equation of its linearized equation, local stability criteria are derived for various model parameters and time delay. By choosing time delay as a bifurcation parameter, the model is found to undergo a sequence of Hopf bifurcation. Furthermore, the direction and the stability of the bifurcating periodic solutions are determined by using the normal form theory and the center manifold theorem. Also, resonant codimension-two bifurcation is found to occur in this model. Some numerical examples are finally given for justifying the theoretical results. Chaotic behavior of this inertial two-neuron system with time delay is found also through numerical simulation, in which some phase plots, waveform plots, power spectra and Lyapunov exponent are computed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. (USA) 81, 3088–3092 (1984)

    Article  Google Scholar 

  2. Schieve, W.C., Bulsara, A.R., Davis, G.M.: Single effective neuron. Phys. Rev. A 43, 2613–2623 (1991)

    Article  Google Scholar 

  3. Zeng, Z., Scheve, W.C., Das, P.K.: Two-neuron dynamics and adiabatic elimination. Physica D 67, 224–236 (1993)

    MATH  Google Scholar 

  4. Kwek, K.H., Li, J.: Periodic solution and dynamics in two-neuron network system. Neural Parallel Sci. Comput. 3, 189–203 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Babcock, K.L., Westervelt, R.M.: Dynamics of simple electronic neural networks. Physica D 28, 305–306 (1987)

    MathSciNet  Google Scholar 

  6. Tani, J.: Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans. Syst. Man Cybern. 26(3), 421–436 (1996)

    Article  Google Scholar 

  7. Tani, J., Fujita, M.: Coupling of memory search and mental rotation by a nonequilibrium dynamics neural network. IEICF Trans. Fund. Electron Commun. Comput. Sci. E 75-A(5), 578–585 (1992)

    Google Scholar 

  8. Tani, J.: Proposal of chaotic steepest descent method for neural networks and analysis of their dynamics. Electron. Commun. Jpn. 75(4), 62–70 (1992)

    Article  MathSciNet  Google Scholar 

  9. Olien, L., Belair, J.: Bifurcations, Stability and monotonicity properties of a delayed neural network model. Physica D 102, 349–363 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Ashmore, J.F., Attwell, D.: Models for electrical tuning in hair cells. Proc. R. Soc. Lond. B 226, 325–344 (1985)

    Article  Google Scholar 

  11. Angelaki, D.E., Correia, M.J.: Models of membrane resonance in pigeon semicircular canal type II hair cells. Biol. Cybern. 65, 1–10 (1991)

    Article  Google Scholar 

  12. Mauro, A., Conti, F., Dodge, F., Schor, R.: Subthreshold behavior and phenomenological impedance of the squid giant axon. J. Gen. Phys. 55, 197–523 (1970)

    Google Scholar 

  13. Puil, I., Gimbarzevsky, B., Spigelman, I.: Primary involvement of K ++ conductance in membrane resonance of trigeminal K ++ root ganglion neuron. J. Neurophysiol. 59(1), 77–89 (1988)

    Google Scholar 

  14. Koch, C.: Cable theory in neurons with active, linear zed membrane. Biol. Cybern. 50, 15–33 (1984)

    Article  Google Scholar 

  15. Eurich, C.W., Mackey, M.C., Schwegler, H.: Recurrent inhibitory dynamics: the role of state-dependent distribution of conduction delay terms. J. Theor. Biol. 216, 31–50 (2002)

    Article  MathSciNet  Google Scholar 

  16. Van der Heiden, U.: Analysis of Neural Networks. Springer, New York (1980)

    MATH  Google Scholar 

  17. Coleman, B.D., Renninger, G.H.: Periodic solutions of certain nonlinear integral equations with a tine-lay. SIAM J. Appl. Math. 31, 111–120 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Coleman, B.D., Renninger, G.H.: Consequences of delayed lateral inhibition in the retina of limulus. II: theory of spatially uniform fields, assuming the 4-point property. J. Theor. Biol. 51, 267–291 (1975)

    Article  MathSciNet  Google Scholar 

  19. Wischert, W., Wunderlin, A., Pelster, A., Olivier, M., Grosambert, J.: Delay-induced instabilities in nonlinear feedback systems. Phys. Rev. E 49, 203 (1994)

    MathSciNet  Google Scholar 

  20. Schanz, M., Pelster, A.: Analysis and numerical investigations of the phase-locked loop with delay. Phys. Rev. E 67, 05620511-8 (2003)

    Google Scholar 

  21. Das II, P.K., Schieve, W.C., Zeng, Z.J.: Chaos in an effective four-neuron neural network. Phys. Lett. A 161, 60–66 (1991)

    Article  Google Scholar 

  22. Wheeler, D.W., Schieve, W.C.: Stability and chaos in an inertial two-neuron system. Physica D 105, 267–284 (1997)

    MATH  Google Scholar 

  23. Marcus, C.M., Westevelt, R.M.: Stability of analog neural network with delay. Phys. Rev. A 39, 347–359 (1989)

    Article  MathSciNet  Google Scholar 

  24. Baldi, P., Atiya, A.: How delays affect neural dynamics and learning. IEEE Trans. Neural Netw. 5, 612–621 (1994)

    Article  Google Scholar 

  25. Pakdaman, K., Malta, C.P., Grotta-Ragazzo, C., Arino, O., Vibert, J.F.: Transient oscillations in continuous-time excitatory ring neural networks with delay. Phys. Rev. E 55, 3234–3248 (1997)

    MathSciNet  Google Scholar 

  26. Liao, X.F., Wu, Z.F., Yu, J.B.: Stability switches and bifurcation analysis of a neural network with continuously delay. IEEE Trans. Syst. Man Cybern. 29, 692–696 (1999)

    Article  Google Scholar 

  27. Liao, X.F., Wong, K.W., Leung, C.S., Wu, Z.F.: Hopf bifurcation and chaos in a single delayed neuron equation with nonmonotonic activation function. Chaos Solitons Fractals 21, 1535–1547 (2001)

    Article  MathSciNet  Google Scholar 

  28. Liao, X.F., Wong, K.W., Wu, Z.F.: Bifurcation analysis in a two-neuron system with distributed delays. Physica D 149, 123–141 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Liao, X.F., Wong, K.W., Wu, Z.F.: Asymptotic stability criteria for a two-neuron network with different time delays. IEEE Trans. Neural Netw. 14, 222–227 (2003)

    Article  Google Scholar 

  30. Liao, X.F., Li, S.W., Wong, K.W.: Hopf bifurcation on a two-neuron system with distributed delays: a frequency domain approach. Nonlinear Dyn. 31, 199–326 (2003)

    Article  MathSciNet  Google Scholar 

  31. Wei, J.J., Velarde, M.G.: Bifurcation analysis and existence of periodic solutions in a simple neural network with delays. Chaos 14(3), 940–953 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wei, J.J., Li, M.Y.: Global existence of periodic solutions in a tri-neuron network model with delays. Physica D 198, 109–119 (2004)

    MathSciNet  Google Scholar 

  33. Wang, L., Zou, X.: Hopf bifurcation in bidirectional associative memory neural networks with delays: analysis and computation. J. Comput. Appl. Math. 167, 73–90 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Guo, S., Huang, L.: Hopf bifurcating periodic orbits in a ring of neurons with delays. Physica D 183, 19–44 (2003)

    MATH  MathSciNet  Google Scholar 

  35. Wei, J.J., Ruan, S.: Stability and bifurcation in a neural network model with two delays. Physica D 130, 255–272 (1999)

    MATH  MathSciNet  Google Scholar 

  36. Giamnakopoulos, F., Zapp, A.: Bifurcation in a planar system of differential delay equations modeling neural activity. Physica D 159, 215–232 (2001)

    MathSciNet  Google Scholar 

  37. Gopalsamy, K., Lueng, I.: Convergence under dynamical threshold with delays. IEEE Trans. Neural Netw. 8, 341–348 (1994)

    Article  Google Scholar 

  38. Gopalsamy, K., Lueng, I.: Delay-induced periodicity in a neural netlet of excitation and inhibition. Physica D 89, 395–426 (1996)

    MATH  MathSciNet  Google Scholar 

  39. Li, C.G., Chen, G.R., Liao, X.F., Yu, J.B.: Hopf bifurcation and chaos in a single inertial neuron model with time delay. Eur. Phys. J. B 41, 337–343 (2004)

    Google Scholar 

  40. Chow, C., Mallet-Paret, J.: Integral averaging and bifurcation. J. Differ. Equ. 26, 112–159 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  41. Ioos, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory. Springer, New York (1980)

    Google Scholar 

  42. Hale, J.K., Lungel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  43. Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in nonlinear dynamics—application to machining dynamics. J. Manuf. Sci. Eng. 119, 485–493 (1997)

    Article  Google Scholar 

  44. Stepan, G.: Retarded Dynamical Systems: Stability and Characteristic Functions. Longman Scientific & Technical, Essex (1989)

    MATH  Google Scholar 

  45. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  46. Cooke, K.L., Grossman, Z.: Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86, 592–627 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  47. Song, Y., Wei, J.: Bifurcation analysis for Chen’s system with delayed feedback and its application to control of chaos. Chaos Solitons Fractals 22(1), 75–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Li, X., Wei, J.: On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos Solitons Fractals 26(2), 519–526 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Liao, X., Liu, Y. et al. Dynamics of an inertial two-neuron system with time delay. Nonlinear Dyn 58, 573–609 (2009). https://doi.org/10.1007/s11071-009-9503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9503-2

Keywords

Navigation