Skip to main content
Log in

Dynamics of impacts with a table moving with piecewise constant velocity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamics of a ball moving in gravitational field and colliding with a moving table is considered. The motion of the limiter is assumed as periodic with piecewise constant velocity. It is assumed that the table moves up with a constant velocity and then goes down with another constant velocity. The Poincaré map describing evolution from an impact to the next impact is derived. Several classes of solutions are computed in analytical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feigin, M.I.: Period-doubling at C-bifurcations in piecewise continuous system. Prikl. Mat. Mekh. 34, 861–869 (1970)

    MathSciNet  Google Scholar 

  2. Feigin, M.I.: On subperiodic motions arising in the piecewise continuous systems. Prikl. Mat. Mekh. 38, 810–818 (1974)

    Google Scholar 

  3. Feigin, M.I.: On the behaviour of dynamical systems near the boundary of existence region of periodic motions. Prikl. Mat. Mekh. 41, 628–636 (1977)

    MathSciNet  Google Scholar 

  4. di Bernardo, M., Feigin, M.I., Hogan, S.J., Homer, M.E.: Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems. Chaos Solitons Fractals 10, 1881–1908 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Peterka, F.: Part 1: Theoretical analysis of n-multiple (1/n)-impact solutions. CSAV Acta Tech. 19, 462–473 (1974)

    Google Scholar 

  6. Peterka, F.: Part 2: Results of analogue computer modelling of the motion. CSAV Acta Tech. 19, 569–580 (1974)

    MATH  Google Scholar 

  7. Peterka, F., Vacik, J.: Transition to chaotic motion in mechanical systems with impacts. J. Sound Vib. 154, 95–115 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Shaw, S.W., Holmes, P.J.: Periodically forced linear oscillator with impacts: chaos and long-periodic motions. Phys. Rev. Lett. 51, 623–626 (1983)

    Article  MathSciNet  Google Scholar 

  9. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–144 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Shaw, S.W., Holmes, P.J.: A periodically forced impact oscillator with large dissipation. J. Appl. Mech. 50, 849–857 (1983)

    Article  MATH  Google Scholar 

  11. Thompson, J.M.T., Ghaffari, R.: Chaotic dynamics of an impact oscillator. Phys. Rev. A 27, 1741–1743 (1983)

    Article  MathSciNet  Google Scholar 

  12. Thompson, J.M.T., Stewart, H.B.: Chaotic motions of an impacting system. In: Non-Linear Dynamics and Chaos. Wiley, New York (1986)

    Google Scholar 

  13. Whiston, G.S.: Global dynamics of a vibro-impacting linear oscillator. J. Sound Vib. 118, 395–429 (1987)

    Article  MathSciNet  Google Scholar 

  14. Whiston, G.S.: Singularities in vibro-impact dynamics. J. Sound Vib. 152, 427–460 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nordmark, A.B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)

    Article  Google Scholar 

  16. Nordmark, A.B.: Grazing conditions and chaos in impacting systems. PhD thesis, Royal Institute of Technology, Stockholm, Sweden (1992)

  17. Nordmark, A.B.: Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillator. Nonlinearity 14, 1517–1542 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Foale, S., Bishop, S.R.: Dynamical complexities of forced impacting systems. Philos. Trans. R. Soc. Lond. A 338, 547–556 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Foale, S., Bishop, S.R.: Bifurcations in impact oscillators. Nonlinear Dyn. 6, 285–289 (1994)

    Article  Google Scholar 

  20. Luo, G., Xie, J., Zhu, X., Zhang, J.: Periodic motions and bifurcations of a vibro-impact system. Chaos Solitons Fractals 36, 1340–1347 (2008)

    Article  Google Scholar 

  21. Luo, G., Ma, L., Lv, X.: Dynamic analysis and suppressing chaotic impacts of a two-degree-of-freedom oscillator with a clearance. Nonlinear Anal. Real World Appl. 10, 756–778 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fermi, E.: On the origin of the cosmic radiation. Phys. Rev. 75, 1169–1174 (1949)

    Article  MATH  Google Scholar 

  23. Ulam, S.: On some statistical properties of dynamical systems. In: Le Cam, M.L., Neyman, J., Scott, E. (eds.) Proceedings of Fourth Berkeley Symp. on Math. Stat. and Prob., vol. 3, p. 315. University of California Press, Berkeley (1961)

    Google Scholar 

  24. Brahic, A.: Numerical study of a simple dynamical system. Astron. Astrophys. 12, 98–110 (1971)

    Google Scholar 

  25. Lieberman, M., Lichtenberg, A.J.: Stochastic and adiabatic behavior of particles accelerated by periodic forces. Phys. Rev. A 5, 1852–1866 (1972)

    Article  Google Scholar 

  26. Lichtenberg, A.J., Lieberman, M., Cohen, R.H.: Fermi acceleration revisited. Physica D 1, 291–305 (1980)

    Article  MathSciNet  Google Scholar 

  27. Lichtenberg, A.J., Lieberman, M.: Regular and Stochastic Motion. Springer, New York (1983)

    MATH  Google Scholar 

  28. Pustyl’nikov, L.D.: Stable and oscillating motions in non-autonomous dynamical systems, II. Moscow. Math. Soc. 34, 1–101 (1977)

    MathSciNet  Google Scholar 

  29. Pustyl’nikov, L.D.: A new mechanism for particle acceleration and a relativistic analogue of the Fermi–Ulam model. Theor. Math. Phys. 77, 1110–1115 (1988)

    Article  MathSciNet  Google Scholar 

  30. Holmes, P.J.: The dynamics of repeated impacts with a sinusoidally vibrating table. J. Sound Vib. 84, 173–189 (1982)

    MATH  Google Scholar 

  31. Pierański, P., Małecki, J.: Noisy precursors and resonant properties of the period-doubling modes in a nonlinear dynamical system. Phys. Rev. A 34, 582–590 (1986)

    Article  Google Scholar 

  32. Kowalik, Z.J., Franaszek, M., Pierański, P.: Self-reanimating chaos in the bouncing-ball system. Phys. Rev. A 37, 4016–4022 (1988)

    Article  MathSciNet  Google Scholar 

  33. Luo, A.C.J., Han, R.P.S.: The dynamics of a bouncing ball with a sinusoidally vibrating table revisited. Nonlinear Dyn. 10, 1–18 (1996)

    Article  MathSciNet  Google Scholar 

  34. Saif, F., Bialynicki-Birula, I., Fortunato, M., Schleich, W.P.: Fermi accelerator in atom optics. Phys. Rev. A 58, 4779–4783 (1998)

    Article  Google Scholar 

  35. Giusepponi, S., Marchesoni, F., Borromeo, M.: Randomness in the bouncing ball dynamics. Physica A 351, 142–158 (2005)

    Article  Google Scholar 

  36. Luo, G., Chu, Y., Zhang, Y., Xie, J.: Co-dimension two bifurcation of a vibro-bounce system. Acta Mech. Sin. 21, 197–206 (2005)

    Article  Google Scholar 

  37. Luo, A.C.J., Guo, Y.: Motion switching and chaos of a particle in a generalized Fermi-acceleration oscillator. Math. Probl. Eng. (2009, in press)

  38. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)

    MATH  Google Scholar 

  39. Awrejcewicz, J., Lamarque, C.-H.: Bifurcation and Chaos in Nonsmooth Mechanical Systems. World Scientific Series on Nonlinear Science: Series A, vol. 45. World Scientific Publishing, Singapore (2003)

    MATH  Google Scholar 

  40. Luo, A.C.J.: Singularity and Dynamics on Discontinuous Vector Fields. Monograph Series on Nonlinear Science and Complexity, vol. 3. Elsevier, Amsterdam (2006)

    Google Scholar 

  41. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems. Theory and Applications. Series: Applied Mathematical Sciences, vol. 163. Springer, Berlin (2008)

    MATH  Google Scholar 

  42. Mehta, A. (ed.): Granular Matter: An Interdisciplinary Approach. Springer, Berlin (1994)

    Google Scholar 

  43. Knudsen, C., Feldberg, R., True, H.: Bifurcations and chaos in a model of a rolling wheel-set. Philos. Trans. R. Soc. Lond. A 338, 455–469 (1992)

    Article  MATH  Google Scholar 

  44. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  45. Okniński, A., Radziszewski, B.: Grazing dynamics and dependence on initial conditions in certain systems with impacts. arXiv:0706.0257 (2007)

  46. Okniński, A., Radziszewski, B.: Dynamics of a material point colliding with a limiter moving with piecewise constant velocity. In: Awrejcewicz, J. (ed.) Modeling, Simulation and Control of Nonlinear Engineering Dynamical Systems, pp. 117–127. Springer, Berlin (2009)

    Chapter  Google Scholar 

  47. Okniński, A., Radziszewski, B.: Dynamics of impacts with a table moving with piecewise constant velocity. In: Cempel, C., Dobry, M.W. (eds.) Proceedings of XXIII Symposium Vibrations in Physical Systems, Poznań–Będlewo, 28–31 May, 2008. Vibrations in Physical Systems, vol. XXIII, pp. 289–294 (2008)

  48. Okniński, A., Radziszewski, B.: To be published

  49. Jury, E.I.: Inners and Stability of Dynamic Systems. Wiley, New York (1974) [2nd edn., Krieger, Malabar, 1982]

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Okniński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okniński, A., Radziszewski, B. Dynamics of impacts with a table moving with piecewise constant velocity. Nonlinear Dyn 58, 515–523 (2009). https://doi.org/10.1007/s11071-009-9497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9497-9

Keywords

Navigation