Skip to main content
Log in

A convergence result for a vibro-impact problem with a general inertia operator

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider a mechanical system with a finite number of degrees of freedom and non-trivial inertia matrix, submitted to a single perfect unilateral constraint. We assume that the local impact law consists in the transmission of the tangential component of the velocity and the reflexion of the normal component which is multiplied by the restitution coefficient e∈[0,1]. Then, starting from the measure-differential formulation of the problem given by J.J. Moreau, we propose a velocity-based time-stepping method, reminiscent of the catching-up algorithm for sweeping processes and we prove that the numerical solutions converge to a solution of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Anal. 154, 199–274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dzonou, R., Monteiro Marques, M.D.P.: Sweeping process for inelastic impact problem with a general inertia operator. Eur. J. Mech. A, Solids 26(3), 474–490 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dzonou, R., Monteiro Marques, M.D.P., Paoli, L.: Algorithme de type ‘sweeping process’ pour un problème de vibro-impact avec un opérateur d’inertie non trivial. C.R. Acad. Sci. Paris Sér. 2B 335, 56–60 (2007)

    MATH  Google Scholar 

  4. Jeffery, R.L.: Non-absolutely convergent integrals with respect to functions of bounded variations. Trans. Am. Math. Soc. 34, 645–675 (1932)

    Article  MathSciNet  Google Scholar 

  5. Mabrouk, M.: A unified variational model for the dynamics of perfect unilateral constraints. Eur. J. Mech. A, Solids 17, 819–842 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Monteiro Marques, M.D.P.: Chocs inélastiques standards: un résultat d’existence. Séminaire d’Analyse Convexe, USTL, Montpellier, 15, exposé n. 4 (1983)

  7. Monteiro Marques, M.D.P.: Differential Inclusions in Non-Smooth Mechanical Problems: Shocks and Dry Friction. Birkhauser, Boston (1993)

    Google Scholar 

  8. Moreau, J.J.: Un cas de convergence des itérées d’une contraction d’un espace hilbertien. C.R. Acad. Sci. Paris, Sér. A 286, 143–144 (1978)

    MATH  MathSciNet  Google Scholar 

  9. Moreau, J.J.: Liaisons unilatérales sans frottement et chocs inélastiques. C.R. Acad. Sci. Paris, Sér. II 296, 1473–1476 (1983)

    MATH  MathSciNet  Google Scholar 

  10. Paoli, L.: Analyse numérique de vibrations avec contraintes unilatérales. PhD Thesis, Université Claude Bernard-Lyon I, France (1993)

  11. Paoli, L.: Continuous dependence on data for vibro-impact problems. Math. Models Methods Appl. Sci. 15, 53–93 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Paoli, L., Schatzman, M.: Mouvement à nombre fini de dégrés de liberté avec contraintes unilatérales: cas avec perte d’énergie. Modél. Math. Anal. Numér 27(6), 673–717 (1993)

    MATH  MathSciNet  Google Scholar 

  13. Paoli, L., Schatzman, M.: A numerical scheme for impact problems I and II. SIAM, J. Numer. Anal. 40(2), 702–733, 734-768 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Schatzman, M.: A class of nonlinear differential equations of second order in time. Non-linear Anal. Theory Methods Appl. 2, 355–373 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel D. P. Monteiro Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzonou, R., Monteiro Marques, M.D.P. & Paoli, L. A convergence result for a vibro-impact problem with a general inertia operator. Nonlinear Dyn 58, 361–384 (2009). https://doi.org/10.1007/s11071-009-9484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9484-1

Keywords

Navigation