Skip to main content
Log in

On the supersymmetric nonlinear evolution equations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Supersymmetrization of a nonlinear evolution equation in which the bosonic equation is independent of the fermionic variable and the system is linear in fermionic field goes by the name B-supersymmetrization. We provide B-supersymmetric extension of a number of quasilinear and fully nonlinear evolution equations and demonstrate that the supersymmetric system follows from the usual action principle. We observe that B-supersymmetrization can also be realized using a generalized Noetherian symmetry such that the resulting set of Lagrangian symmetries coincides with symmetries of the field equations. Following this viewpoint we derive conservation laws for the supersymmetric pair of equations. We attempt to realize the bosonic and fermionic fields in terms of bright and dark solitons. The interpretation sought by us has its origin in the classic work of Bateman who introduced a reverse-time system with negative friction to bring linear dissipative systems within the framework of variational principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wess, J., Zumino, B.: Supergauge transformations in four dimensions. Nucl. Phys. B 70, 39 (1974)

    Article  MathSciNet  Google Scholar 

  2. Mathieu, P.: Supersymmetric extension of the Korteweg–de Vries equation. J. Math. Phys. 29, 2499–2506 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves. Philos. Mag. 39, 422 (1895)

    Google Scholar 

  4. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240 (1965)

    Article  Google Scholar 

  5. Das, A.: Selected topics in integrable models. arXiv:hep-th/0110125v1

  6. Calogero, F., Degasperis, A.: Spectral Transform and Soliton. North-Holland, New York (1982)

    Google Scholar 

  7. Hunter, J., Zheng, Y.: On a completely integrable nonlinear hyperbolic variational equation. Physica D 79, 361 (1994)

    MATH  MathSciNet  Google Scholar 

  8. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 70, 1661 (1993)

    Article  MathSciNet  Google Scholar 

  9. Rosenau, P., Hyman, J.M.: Compactons: solitons with finite wavelength. Phys. Rev. Lett. 70, 564 (1993)

    Article  MATH  Google Scholar 

  10. Olver, P.J.: Application of Lie Groups to Differential Equation. Springer, New York (1993)

    Google Scholar 

  11. Bateman, H.: On dissipative systems and related variational principles. Phys. Rev. 38, 815 (1931)

    Article  MATH  MathSciNet  Google Scholar 

  12. Talukdar, B., Das, U.: Higher-Order Systems in Classical Mechanics. Narosa, New Delhi (2008)

    Google Scholar 

  13. Miura, R.M.: Korteweg–de Vries equation and generalizations, II: existence of conservation laws and constants of motion. J. Math. Phys. 9, 1202 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Talukdar, B., Ghosh, S., Samanna, J., Sarkar, P.: Inverse problem of the variational calculus for higher KdV equations. Eur. Phys. J. D 21, 105 (2002)

    Article  Google Scholar 

  15. Ghosh, S., Samanna, J., Talukdar, B.: Canonical structure of evolution equations with non-linear dispersive terms. Pramana J. Phys. 61, 93 (2003)

    Article  Google Scholar 

  16. Ghosh, S., Das, U., Talukdar, B.: Inverse variational problem for nonlinear evolution equations. Int. J. Theor. Phys. 44, 363 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Helmholtz, H.: Über der physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math. 100, 137 (1887)

    Google Scholar 

  18. Kaup, D.J., Malomed, B.A.: Variational principle for the Zakharov–Shabat equations. Physica D 87, 155 (1995)

    Article  MathSciNet  Google Scholar 

  19. Hojman, S.: Symmetries of Lagrangians and of their equations of motion. J. Phys. A 17, 2399 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ibragimov, N.H., Kolsrud, T.: Lagrangian approach to evolution equations: symmetries and conservation laws. Nonlinear Dyn. 36, 29 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Santilli, R.M.: Foundations of Theoretical Mechanics I. Springer, New York (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Talukdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhuri, A., Talukdar, B. & Ghosh, S. On the supersymmetric nonlinear evolution equations. Nonlinear Dyn 58, 249–258 (2009). https://doi.org/10.1007/s11071-009-9475-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9475-2

Keywords

Navigation