Skip to main content
Log in

A velocity matching car-following model on a closed ring in which overtaking is allowed

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Car-following models seek to describe the behaviour of a group of vehicles as they move along a stretch of road. In such models the behaviour of each vehicle is taken to be dependant on the motion of the vehicle in front and overtaking is not permitted. In this paper the effect of removing this ‘no-overtaking’ restriction is investigated. The resulting model is described in terms of a set of coupled time delay differential equations and these are solved numerically to analyse their post-transient behaviour under a periodic perturbation. For certain parameter choices this behaviour is found to be chaotic, and the degree of chaos is estimated using the Grassberger–Procaccia dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brackstone, M., McDonald, M.: Car following: A historical review. Trans. Res. Part F Traffic Psychol. Behav. 2, 181–196 (2000)

    Article  Google Scholar 

  2. Gazis, D.C.: Traffic Theory. Kluwer Academic, Dordrecht (2002)

    MATH  Google Scholar 

  3. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  Google Scholar 

  4. Bando, M., Hasebe, K., Nakanishi, K., Nakayama, A.: Analysis of optimal velocity model with explicit delay. Phys. Rev. E 58, 5429–5435 (1998)

    Article  Google Scholar 

  5. Wilson, R.E., Berg, P., Hooper, S., Lunt, G.: Many neighbour interactions and non-locality in traffic models. Eur. Phys. J. B 39, 397–408 (2004)

    Article  Google Scholar 

  6. Orosz, G., Wilson, R.E., Krauskopf, B.: Global bifurcation investigation of an optimal velocity model with driver reaction time. Phys. Rev. E 70, 026207 (2004)

    Article  MathSciNet  Google Scholar 

  7. McCartney, M.: A trip time model for traffic flow on a semi-closed loop. Transp. Res. B (2007, submitted)

  8. Gibson, S., McCartney, M.: Investigating a class of car following model on a ring. In: Heydecker, B. (ed.) Mathematics in Transport, pp. 97–109. Elsevier, Amsterdam (2007)

    Google Scholar 

  9. McCartney, M., Gibson, S.: Differential equations, traffic dynamics and the N roots of unity. Math. Gaz. 90, 502–505 (2006)

    Google Scholar 

  10. McCartney, M., Gibson, S.: The routes of unity. Int. J. Math. Educ. Sci. Technol. 37, 992–997 (2006)

    Article  MathSciNet  Google Scholar 

  11. Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9, 545–567 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jarrett, D., Xiaoyan, Z.: The dynamic behaviour of road traffic flow: stability or chaos? In: Crilly, A.J., Earnshaw, R.A., Jones, H. (eds.) Applications of Fractals and Chaos. Springer, Berlin (1993)

    Google Scholar 

  13. Addison, P.S., Low, D.J.: A novel nonlinear car-following model. Chaos 8, 791–799 (1998)

    Article  MATH  Google Scholar 

  14. Low, D.J., Addison, P.S.: A nonlinear temporal headway model of traffic dynamics. Nonlinear Dyn. 16, 127–151 (1998)

    Article  MATH  Google Scholar 

  15. Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, London (2003)

    MATH  Google Scholar 

  16. Hilborn, R.C.: Chaos and Nonlinear Dynamics, 2nd edn. Oxford University Press, London (2000)

    MATH  Google Scholar 

  17. Addison, P.S.: Fractals and Chaos: An Illustrated Course. Institute of Physics, Bristol (1997)

    MATH  Google Scholar 

  18. Grassberger, P., Procaccia, I.: Characterisation of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  19. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chandler, F.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6, 165–184 (1958)

    Article  MathSciNet  Google Scholar 

  21. Toledo, B.A., Munoz, V., Rogan, J., Tenreiro, C.: Modeling traffic through a sequence of traffic lights. Phys. Rev. E 70, 016107 (2004)

    Article  Google Scholar 

  22. Kesting, A., Treiber, M., Helbing, D.: General lane-changing model MOBIL for car-following models. Transp. Res. Rec. 1999, 86–94 (2007)

    Article  Google Scholar 

  23. Laval, J.A., Daganzo, C.F.: Lane-changing in traffic streams. Transp. Res. B 40, 251–264 (2006)

    Article  Google Scholar 

  24. Lan, L.W., Lin, F.Y., Kuo, A.Y.: Identification for chaotic phenomena in short term traffic flows: A parsimony procedure with surrogate data. J. East. Asia Soc. Transp. Stud. 6, 1518–1533 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. McCartney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamison, S., McCartney, M. A velocity matching car-following model on a closed ring in which overtaking is allowed. Nonlinear Dyn 58, 141–151 (2009). https://doi.org/10.1007/s11071-009-9467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-009-9467-2

Keywords

Navigation