Skip to main content
Log in

Wave-based control of non-linear flexible mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The need to achieve rapid and accurate position control of a system end-point by an actuator working through a flexible system arises frequently, in cases from space structures to disk drive heads, from medical mechanisms to long-arm manipulators, from cranes to special robots. The system’s actuator must then attempt to reconcile two, potentially conflicting, demands: position control and active vibration damping. Somehow each must be achieved while respecting the other’s requirements. Wave-based control is a powerful solution with many advantages over previous techniques. The central idea is to consider the actuator motion as launching mechanical waves into the flexible system while simultaneously absorbing returning waves. This simple, intuitive idea leads to robust, generic, highly efficient, adaptable controllers, allowing rapid and almost vibrationless re-positioning of the remote load (tip mass). This gives a generic, high-performance solution to this important problem that does not depend on an accurate system model or near-ideal actuator behaviour. At first sight wave-based control assumes superposition and therefore linearity. This paper shows that wave-based control is also robust (or can easily be made robust) to non-linear behaviour associated with non-linear elasticity and with large-deflection effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dwivedya, S.K., Eberhardb, P.: Dynamic analysis of flexible manipulators: a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)

    Article  MathSciNet  Google Scholar 

  2. Benosman, M., Vey, G.L.: Control of flexible manipulators: A survey. Robotica 22(5), 533–545 (2004)

    Article  Google Scholar 

  3. Sage, H.G., de Mathelin, M.F., Ostertag, E.: Robust control of robot manipulators: A survey. Int. J. Control 72(16), 1498–1522 (1999). doi:10.1080/002071799220137

    Article  MATH  Google Scholar 

  4. Robinett, R.D. III, Dohrmann, C.R., Eisler, G.R., Feddema, J.T., Parker, G.G., Wilson, D.G., Stokes, D.: Flexible Robot Dynamics and Controls. Kluwer Academic/Plenum, New York (2002)

    Google Scholar 

  5. Wang, F.-Y., Gao, Y.: Advanced Studies of Flexible Robotic Manipulators: Modeling, Design, Control and Applications. World Scientific, Singapore (2003). ISBN-13, 9789812383907

    MATH  Google Scholar 

  6. Singh, T., Heppler, G.R.: Shaped input control of a system with multiple modes. ASME. J. Dyn. Syst. Meas. Control 115, 341–347 (1993). doi:10.1115/1.2899108

    Article  MATH  Google Scholar 

  7. Romano, M., Agrawal, B., Bernelli-Zazzera, F.: Experiments on command shaping control of a manipulator with flexible links. AIAA J. Guid. Control Dyn. 25(2), 232–239 (2002)

    Article  Google Scholar 

  8. Pao, L.Y., La-orpacharapan, C.: Shaped time-optimal feedback controllers for flexible structures. ASME J. Dyn. Syst. Meas. Control 126, 173–186 (2004). doi:10.1115/1.1637639

    Article  Google Scholar 

  9. Xu, J.-X., Cao, W.-J.: Synthesized sliding mode control of a single-link flexible robot. Int. J. Control 73(3), 197–209 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lee, T.H., Ge, S.S., Wang, Z.P.: Adaptive robust control design for multi-link flexible robots. Mechatronics 11(8), 951–967 (2001)

    Article  Google Scholar 

  11. Feliu, J.J., Feliu, V., Cerrada, C.: Load adaptive control of single-link flexible arms based on a new modelling technique. IEEE Trans. Robotics Autom. 15(5), 793–804 (1999)

    Article  Google Scholar 

  12. Vincent, T.L., Joshi, S.P., Yeong, C.L.: Positioning and active damping of spring–mass systems. ASME J. Dyn. Syst. Meas. Control 111, 592–599 (1989)

    Article  Google Scholar 

  13. Jayasuriya, S., Choura, S.: On the finite settling time and residual vibration control of flexible structures. J. Sound Vib. 148(1), 117–136 (1991)

    Article  Google Scholar 

  14. Meckl, P., Seering, W.: Active vibration damping in a three-axis robotic manipulator. ASME J. Vib. Acoust. Stress Reliab. Des. 107, 38–46 (1985)

    Google Scholar 

  15. Von Flotow, A.H.: Traveling wave control for large spacecraft structures. J. Guid. Control Dyn. 9(6), 673–680 (1986). doi:10.2514/3.20163

    Article  Google Scholar 

  16. Halevi, Y.: Control of flexible structures governed by the wave equation using infinite dimensional transfer functions. ASME J. Dyn. Syst. Meas. Control 127(4), 579–588 (2005). doi:10.1115/1.2098895

    Article  Google Scholar 

  17. Saigo, M., Tanaka, N., Tani, K.: An approach to vibration control of multiple-pendulum system by wave absorption. ASME J. Vib. Acoust. 120, 524–533 (1998)

    Article  Google Scholar 

  18. Saigo, M., Tanaka, N., Nam, D.H.: Torsional vibration suppression by wave-absorption control with imaginary system. J. Sound Vib. 270, 657–672 (2004). doi:10.1016/S0022-460X(03)00185-8

    Article  Google Scholar 

  19. O’Connor, W.J., Lang, D.: Position control of flexible robot arms using mechanical waves. ASME J. Dyn. Syst. Meas. Control 120(3), 334–339 (1998)

    Article  Google Scholar 

  20. O’Connor, W.J.: A gantry crane problem solved. ASME J. Dyn. Syst. Meas. Control 125(4), 569–576 (2003). doi:10.1115/1.1636198

    Article  Google Scholar 

  21. O’Connor, W.J.: Wave-echo control of lumped flexible systems. J. Sound Vib. 298, 1001–1018 (2006). doi:10.1016/j.jsv.2006.06.010

    Article  Google Scholar 

  22. O’Connor, W.J.: Wave-based analysis and control of lump-modeled flexible robots. Robotics 23, 342–352 (2007)

    Google Scholar 

  23. Payo, I., Ramos, F., Feliu, V., Cortazar, O.: Experimental validation of nonlinear dynamic models for single-link very flexible arms. In: 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Dec. (2005)

  24. Ramos, F., O’Connor, W.J.: Non-linear behavior in wave-based control. In: Proceedings of the American Control Conference, pp. 4203–4208. New York (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. O’Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connor, W.J., Ramos de la Flor, F., McKeown, D.J. et al. Wave-based control of non-linear flexible mechanical systems. Nonlinear Dyn 57, 113–123 (2009). https://doi.org/10.1007/s11071-008-9425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9425-4

Keywords

Navigation