Skip to main content
Log in

Bifurcations and chaos of an inclined cable

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear behavior of an inclined cable subjected to a harmonic excitation is investigated in this paper. The Galerkin’s method is applied to the partial differential governing equations to obtain a two-degree-of-freedom nonlinear system subjected to harmonic excitation. The nonlinear systems in the presence of both external and 1:1 internal resonances are transformed to the averaged equations by using the method of averaging. The averaged equations are numerically examined to obtain the steady-state responses and chaotic solutions. Five cascades of period-doubling bifurcations leading to chaotic solutions, 3-periodic solutions leading to chaotic solution, boundary crisis phenomena, as well as the Shilnikov mechanism for chaos, are observed. In order to study the global dynamics of an inclined cable, after determining the averaged equations of motion in a suitable form, a new global perturbation technique developed by Kovačič and Wiggins is used. This technique provides analytical results for the critical parameter values at which the dynamical system, through the Shilnikov type homoclinic orbits, possesses a Smale horseshoe type of chaos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of a suspended cable. Proc. R. Soc. Lond. Ser. A 341, 299–315 (1974)

    Article  Google Scholar 

  2. Irvine, H.M.: Cable Structures. MIT Press, Cambridge (1981)

    Google Scholar 

  3. Carrier, G.F.: On the non-linear vibration problem of the elastic string. Q. Appl. Math. 3, 157–165 (1945)

    MATH  MathSciNet  Google Scholar 

  4. Carrier, G.F.: A note on vibration string. Q. Appl. Math. 7, 97–101 (1949)

    MATH  MathSciNet  Google Scholar 

  5. Meirovitch, L.: Elements of Vibration Analysis. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  6. West, H.H., Geschwindner, L.F., Suhoski, J.E.: Natural vibrations of suspension cables. J. Struct. Div. ST11, 2277–2291 (1975)

    Google Scholar 

  7. Henghold, W.M., Russell, J.J.: Equilibrium and natural frequencies of cable structures (A nonlinear finite element approach). Comput. Struct. 6, 267–271 (1976)

    Article  Google Scholar 

  8. Perkins, N.C.: Modal interactions in the nonlinear response of elastic cables under parametric/excitation. Int. J. Non-Linear Mech. 27(2), 233–250 (1992)

    Article  MATH  Google Scholar 

  9. Takahashi, K., Konishi, Y.: Non-linear vibrations of cables in three dimensions, Part II: out-of-plane vibrations under in-plane sinusoidally time-varying load. J. Sound Vib. 118(1), 85–97 (1987)

    Article  Google Scholar 

  10. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.M.: Multiple resonances in suspended cables: direct versus reduced-order models. Int. J. Non-Linear Mech. 34(5), 901–924 (1999)

    Article  Google Scholar 

  11. Benedettini, F., Rega, G., Alaggio, R.: Nonlinear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182(5), 775–798 (1995)

    Article  Google Scholar 

  12. Rega, G., Lacarbonara, W., Nayfeh, A.H., Chin, C.-M.: Multimodal resonances in suspended cables via a direct perturbation approach. In: Proceedings of ASME DETC97, vol. DETC97/VIB-4101, Sacramento, CA, 14–17 September 1997

  13. Pilipchuk, V.N., Ibrahim, R.A.: Non-linear modal interactions in shallow suspended cables. J. Sound Vib. 227(1), 1–28 (1999)

    Article  Google Scholar 

  14. Zheng, G., Ko, J.M., Ni, Y.O.: Super-harmonic and internal resonances of a suspended cable with nearly commensurable natural frequencies. Nonlinear Dyn. 30, 55–70 (2002)

    Article  MATH  Google Scholar 

  15. Nayfeh, A.H., Arafat, H., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhao, Y.Y., Wang, L.H., Chen, D.L., Jiang, L.Z.: Non-linear dynamics analysis of the two-dimensional simplified model of an elastic cable. J. Sound Vib. 255(1), 43–59 (2002)

    Article  Google Scholar 

  17. Malhotra, N., Sri Namachchivaya, N., McDonald, R.J.: Multipulse orbits in the motion of flexible spinning discs. J. Nonlinear Sci. 12(1), 1–26 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Haller, G., Wiggins, S: Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrödinger equation. Physica D 85, 311–347 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yeo, M.H., Lee, W.K.: Evidence of global bifurcations of an imperfect circular plate. J. Sound Vib. 293(1), 138–155 (2006)

    Article  Google Scholar 

  20. Kovačič, G., Wiggins, S.: Orbits homoclinic to resonance with an application to chaos in a model of the forced and damped sine-Gordon equation. Physica D 57, 185–225 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Reilly, O.M., Holmes, P.J.: Non-linear, non-planar and non-periodic vibrations of a string. J. Sound Vib. 153(3), 413–435 (1992)

    Article  MATH  Google Scholar 

  22. Reilly, O.M.: Global bifurcations in the forced vibration of a damped string. Int. J. Non-Linear Mech. 28(3), 337–351 (1993)

    Article  MATH  Google Scholar 

  23. Zhang, W., Tang, Y.: Global dynamics of the cable under combined parametrical and external excitations. Int. J. Non-Linear Mech. 37(4), 505–526 (2002)

    Article  MATH  Google Scholar 

  24. Tien, W., Sri Namachchivaya, N., Bajaj, A.K.: Non-linear dynamics of a shallow arch under periodic excitation-I. 1:2 internal resonances. Int. J. Non-Linear Mech. 29(3), 349–366 (1994)

    Article  MATH  Google Scholar 

  25. Tien, W., Sri Namachchivaya, N., Malhotra, N.: Non-linear dynamics of a shallow arch under periodic excitation-II. 1:1 internal resonance. Int. J. Non-Linear Mech. 29(3), 367–386 (1994)

    Article  MATH  Google Scholar 

  26. Sanders, J.A., Verhulst, F.: Averaging Methods in Non-linear Dynamical System. Applied Mathematical Sciences, vol. 59. Springer, New York (1985)

    Google Scholar 

  27. Guckenheimer, J., Holmes, P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Field. Springer, New York (1983)

    Google Scholar 

  28. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Ind. Univ. Math. J. 21, 193–225 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nusse, H.E., York, J.A.: Dynamics: Numerical Explorations. Springer, New York (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkui Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Xu, Q. Bifurcations and chaos of an inclined cable. Nonlinear Dyn 57, 37–55 (2009). https://doi.org/10.1007/s11071-008-9418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9418-3

Keywords

Navigation