Skip to main content
Log in

Nonlinear modeling of hysteretic systems with double hysteretic loops using position and acceleration information

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents two new dynamic hysteresis models obtained from the Bouc–Wen model by incorporating position and acceleration information. On the one hand, the model employing position information is rate-independent and it is able to reproduce some kind of double hysteretic loops unable to be reproduced with the original Bouc–Wen model. On the other hand, the model employing acceleration information is insensitive to linear time-scale variations. Moreover, a classification of the BIBO-stable models has been derived for both position and acceleration cases. Double hysteretic loops have been experimentally reported in shape-memory alloys, reinforced concrete structures, wood structures and lightweight steel shear wall structures. The proposed hysteretic models represent a prominent use in the field of structural dynamics and earthquake engineering because they can capture the nonlinear dynamics of the materials and structures presented earlier when they are subjected to dynamic loads as earthquake excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiken, I.D., Nims, D.K., Kelly, J.M.: Comparative study of four passive energy dissipation systems. Bull. N.Z. Nat. Soc. Earthq. Eng. 25(3), 175–186 (1992)

    Google Scholar 

  2. Benitez, S., Acho, L., Guerra, R.: Dynamic hysteresis model derivated from the LuGre model. In: 2nd International Conference on Informatics in Control, Automation and Robotics, Barcelona, Spain (2006)

  3. Bruno, S., Valente, C.: Comparative response analysis of conventional and innovative seismic protection strategies. Earthq. Eng. Struct. Dyn. 31, 1067–1092 (2002)

    Article  Google Scholar 

  4. Chatterjee, P., Basu, B.: Nonstationary seismic response of a tank on a bilinear hysteretic soil using wavelet transform. Probab. Eng. Mech. 21(1), 54–63 (2006)

    Article  Google Scholar 

  5. Chua, L.O., Steven, C.V.: A generalized hysteresis model. IEEE Trans. Circuit Theory CT-19(1), 36–48 (1972)

    Article  Google Scholar 

  6. Clarke, R.P.: Non-Bouc degrading hysteresis model for nonlinear dynamic procedure seismic design. J. Struct. Eng. ASCE 131(2), 287–291 (2005)

    Article  Google Scholar 

  7. Dobson, S., Noori, M., Hou, Z., Dimentberg, M., Baber, T.: Modeling and Random vibration analysis of SDOF systems with asymmetric hysteresis. Int. J. Non-Linear Mech. 32(4), 669–680 (1997)

    Article  MATH  Google Scholar 

  8. Dolce, M., Cardone, C., Marnetto, R.: Implementation and testing of passive control devices based on shape-memory alloys. Earthq. Eng. Struct. Dyn. 29(7), 945–968 (2000)

    Article  Google Scholar 

  9. Dolce, M., Cardone, D., Ponzo, F.C., Valente, C.: Shaking table tests on reinforced concrete frames without and with passive control systems. Earthq. Eng. Struct. Dyn. 34(14), 1687–1717 (2005)

    Article  Google Scholar 

  10. Elahinia, M.H., Ashrafiuon, H.: Nonlinear control of a shape-memory alloy actuated manipulator. J. Vib. Acoust. 124(4), 566–575 (2002)

    Article  Google Scholar 

  11. Foliente, G.C.: Hysteresis modeling of wood joints and structural systems. J. Struct. Eng. 121(6), 1013–1022 (1995)

    Article  Google Scholar 

  12. Ikhouane, F., Rodellar, J.: Systems with Hysteresis: Analysis, Identification and Control using the Bouc–Wen Model. Wiley, New York (2007)

    MATH  Google Scholar 

  13. Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis, 1st edn. Springer, Berlin (1989)

    MATH  Google Scholar 

  14. Kunnath, S.K., Mander, J.B., Fang, L.: Parameter identification for degrading and pinched hysteretic structural concrete systems. Eng. Struct. 19(3), 224–232 (1997)

    Article  Google Scholar 

  15. Li, S.J., Suzuki, Y., Noori, M.: Improvement of parameter estimation for non-linear hysteretic systems with slip by a fast Bayesian bootstrap filter. Int. J. Non-Linear Mech. 39(4), 1435–1445 (2004)

    Article  MATH  Google Scholar 

  16. Morgen, B., Kurama, Y.: Seismic design of friction-damped precast concrete frame structures. J. Struct. Eng. 133(11), 1501–1511 (2007)

    Article  Google Scholar 

  17. Oh, J.H., Berstein, S.: Semilinear Duhem model for rate-independent and rate-dependent hysteresis. IEEE Trans. Autom. Control 50(5), 631–645 (2005)

    Article  Google Scholar 

  18. Ou, Y., Chiewanichakorn, M., Aref, A., Lee, G.: Seismic performance of segmental precast unbonded posttensioned concrete bridge columns. J. Struct. Eng. 133(11), 1636–1647 (2007)

    Article  Google Scholar 

  19. Palermo, A., Pampanin, S., Marriott, D.: Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections. J. Struct. Eng. 133(11), 1648–1661 (2007)

    Article  Google Scholar 

  20. Pastor, N., Rodríguez-Ferran, A.: Hysteretic modeling of X-braced shear walls. Thin-Walled Struct. 43(10), 1567–1588 (2005)

    Article  Google Scholar 

  21. Perez, F., Sause, F., Pessiki, S.: Analytical and experimental lateral load behavior of unbonded posttensioned precast concrete walls. J. Struct. Eng. 133(11), 1531–1540 (2007)

    Article  Google Scholar 

  22. Rahman, A., Sritharan, S.: Performance-based seismic evaluation of two five-story precast concrete hybrid frame buildings. J. Struct. Eng. 133(11), 1489–1500 (2007)

    Article  Google Scholar 

  23. Restrepo, J.I., Rahman, A.: Seismic performance of self-centering structural walls incorporating energy dissipators. J. Struct. Eng. 133(11), 1560–1570 (2007)

    Article  Google Scholar 

  24. Saadat, S., Salichs, J., Noori, M., Hou, Z., Davoodi, H., Bar-on, I., Suzuki, Y., Masuda, A.: An overview of vibration and seismic applications of NiTi shape-memory alloy. Smart Mater. Struct. 11, 218–229 (2002)

    Article  Google Scholar 

  25. Smith, A.W., Masri, S.F., Kosmatopoulos, E.B., Chassiakos, A.G., Caughey, T.K.: Development of adaptive modeling techniques for non-linear hysteretic systems. Int. J. Non-Linear Mech. 37(8), 1435–1451 (2002)

    Article  Google Scholar 

  26. Song, J., Kiureghian, A.D.: Generalized Bouc–Wen model for highly asymmetric hysteresis. ASCE J. Eng. Mech. 132(6), 610–618 (2006)

    Article  Google Scholar 

  27. Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1991)

    Google Scholar 

  28. Wen, Y.K.: Method of random vibration for hysteretic systems. J. Eng. Mech. 102, 246–263 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Pozo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozo, F., Acho, L., Rodríguez, A. et al. Nonlinear modeling of hysteretic systems with double hysteretic loops using position and acceleration information. Nonlinear Dyn 57, 1–12 (2009). https://doi.org/10.1007/s11071-008-9414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9414-7

Keywords

Navigation