Skip to main content
Log in

Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the dynamics and control of a nonlinear oscillator that is described mathematically by a Variable Order Differential Equation (VODE). The dynamic problem in question arises from the dynamical analysis of a variable viscoelasticity oscillator. The dynamics of the model and the behavior of the variable order differintegrals are shown in variable phase space for different parameters. Two different controllers are developed for the VODEs under study in order to track an arbitrary reference function. A generalization of the van der Pol equation using the VODE formulation is analyzed under the light of the methods introduced in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  2. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  3. Podlubni, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  4. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, River Edge (2000)

    MATH  Google Scholar 

  5. Hu, Y.: Integral Transformations and Anticipative Calculus for Fractional Brownian Motions, Memoirs of the American Mathematical Society. American Mathematical Society, Providence (2005)

    Google Scholar 

  6. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Amsterdam (2006)

  7. Coimbra, C.F.M., L’Esperance, D., Lambert, A., Trolinger, J.D., Rangel, R.H.: An experimental study on the history effects in high-frequency Stokes flows. J. Fluid Mech. 504, 353–363 (2004)

    Article  MATH  Google Scholar 

  8. L’Esperance, D., Coimbra, C.F.M., Trolinger, J.D., Rangel, R.H.: Experimental verification of fractional history effects on the viscous dynamics of small spherical particles. Exp. Fluids 38, 112–116 (2005)

    Article  Google Scholar 

  9. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(8), 134–147 (1971)

    Article  Google Scholar 

  10. Coimbra, C.F.M., Rangel, R.H.: General solution of the particle equation of motion in unsteady Stokes flows. J. Fluid Mech. 370, 53–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Coimbra, C.F.M., Kobayashi, M.H.: On the viscous motion of a small particle in a rotating cylinder. J. Fluid Mech. 469, 257–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37(9), 1465–1470 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Podlubni, I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  Google Scholar 

  14. Petras, I.: Control of fractional-order Chua’s system. J. Electr. Eng. 53(7–8), 219–222 (2002)

    Google Scholar 

  15. Hwang, C., Leu, J.-F., Tsay, S.-Y.: A note on time-domain simulation of feedback fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hartley, T.T., Lorenzo, C.F.: Dynamics and control of initialized fractional-order systems. Nonlinear Dyn. 29, 201–233 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ahmad, W.M., El-Khazali, R., Al-Assaf, Y.: Stabilization of generalized fractional order chaotic systems using state feedback control. Chaos Solitons Fractals 22, 141–150 (2004)

    Article  MATH  Google Scholar 

  18. Cao, J.-Y., Liang, J., Cao, B.-G.: Optimization of fractional order PID controllers based on genetic algorithms. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, pp. 18–21 (2005)

  19. Ladaci, S., Charef, A.: On fractional adaptive control. Nonlinear Dyn. 43, 365–378 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Barbosa, R.S., Machado, J.A.T., Ferreira, I.M., Tar, J.K.: Dynamics of the fractional-order Van der Pol oscillator. In: Proceedings of the IEEE International Conference on Computational Cybernetics (ICCC04), Vienna, Austria, CD-ROM

  21. Barbosa, R.S., Machado, J.A.T., Vinagre, B.M., Calderon, A.J.: Analysis of the Van der Pol oscillator containing derivatives of fractional order. J. Vib. Control 13(9–10), 1291–1301 (2007)

    Article  MATH  Google Scholar 

  22. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Momani, S.: A numerical scheme for the solution of multi-order fractional differential equations. Appl. Math. Comput. 182, 761–770 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Samko, S.K., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transforms Special Funct. 1(4), 277–300 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ross, B., Samko, S.K.: Fractional integration operator of variable order in the Holder space H λ(x). Int. J. Math. Math. Sci. 18(4), 777–788 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ingman, D., Suzdalnitsky, J., Zeifman, M.: Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech. 67, 383–390 (2000)

    Article  MATH  Google Scholar 

  27. Ingman, D., Suzdalnitsky, J.: Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193, 5585–5595 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ingman, D., Suzdalnitsky, J.: Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. 131, 763–767 (2005)

    Article  Google Scholar 

  30. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Ann. Phys. 12(11–12), 692–703 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Ann. Phys. 14(6), 378–389 (2005)

    Article  MATH  Google Scholar 

  32. Ramirez, L.E.S., Coimbra, C.F.M.: A variable order constitutive relation for viscoelasticity. Ann. Phys. 16(7–8), 543–552 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Atkinson, K.E.: The numerical solution of Fredholm integral equations of the second kind. SIAM J. 4(3), 337–348 (1967)

    MATH  Google Scholar 

  34. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194(6–8), 743–773 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Li, C., Deng, W.: Remarks on fractional derivatives. Appl. Math. Comput. 187, 777–784 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Balachandran, K., Park, J.Y., Anandhi, E.R.: Local controllability of quasilinear integrodifferential evolution systems in Banach spaces. J. Math. Anal. Appl. 258, 309–319 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Calvet, J.-P., Arkun, Y.: Stabilization of feedback linearized nonlinear processes under bounded perturbations. In: Proceedings of the American Control Conference, pp. 747–752 (1989)

  38. Calvet, J.-P., Arkun, Y.: Design of P and PI stabilizing controllers for quasi-linear systems. Comput. Chem. Eng. 14(4–5), 415–426 (1990)

    Article  Google Scholar 

  39. Sun, Z., Tsao, T.-C.: Control of linear systems with nonlinear disturbance dynamics. In: Proceedings of the American Control Conference, pp. 3049–3054 (2001)

  40. Williams II, R.L., Lawrence, D.A.: Linear State-Space Control Systems. Wiley, New Jersey (2007)

    Book  Google Scholar 

  41. van der Pol, B.: On relaxation-oscillations. Philos. Mag. 7(2), 978–992 (1926)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, G., Coimbra, C.F.M. Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn 56, 145–157 (2009). https://doi.org/10.1007/s11071-008-9385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9385-8

Keywords

Navigation