Skip to main content
Log in

On stability, persistence, and Hopf bifurcation in fractional order dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This is a preliminary study about the bifurcation phenomenon in fractional order dynamical systems. Persistence of some continuous time fractional order differential equations is studied. A numerical example for Hopf-type bifurcation in a fractional order system is given, hence we propose a modification of the conditions of Hopf bifurcation. Local stability of some biologically motivated functional equations is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, E., El-Sayed, A.M.A., El-Mesiry, E.M., El-Saka, H.A.A.: Numerical solution for the fractional replicator equation. Int. J. Mod. Phys. 16(7), 1–9 (2005)

    Google Scholar 

  2. Ahmed, E., El-Sayed, A., El-Saka, H.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems. Phys. Lett. A 358, 1 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems. Phys. Lett. A 358, 1 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ahmed, E., El-Sayed, A., El-Saka, H.: Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. J. Math. Anal. Appl. 325, 542–553 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Diethelm, K.: Predictor–corrector strategies for single- and multi-term fractional differential equations. In: Lipitakis, E.A. (ed.) Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and its Applications, pp. 117–122. LEA Press, Athens (2002) [Zbl. Math. 1028.65081]

    Google Scholar 

  6. Diethelm, K., Ford, N.J.: The numerical solution of linear and non-linear Fractional differential equations involving Fractional derivatives several of several orders. Numerical Analysis Report 379, Manchester Center for Numerical Computational Mathematics

  7. Diethelm, K., Freed, A.: On the solution of nonlinear fractional order differential equations used in the modelling of viscoplasticity. In: Keil, F., Mackens, W., Voß, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II—Computational Fluid Dynamics, Reaction Engineering, and Molecular properties, pp. 217–224. Springer, Heidelberg (1999)

    Google Scholar 

  8. Diethelm, K., Freed, A.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. In: Heinzel, S., Plesser, T. (eds.) Forschung und wissenschaftliches Rechnen 1998. Gesellschaft für Wisseschaftliche Datenverarbeitung, pp. 57–71. Vandenhoeck & Ruprecht, Göttingen (1999)

    Google Scholar 

  9. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Edelstein-Keshet, L.: Introduction to Mathematical Biology. Siam Classics in Appl. Math. SIAM, Philadelphia (2004)

    Google Scholar 

  12. El-Mesiry, E.M., El-Sayed, A.M.A., El-Saka, H.A.A.: Numerical methods for multi-term fractional (arbitrary) orders differential equations. Appl. Math. Comput. 160(3), 683–699 (2005)

    MATH  MathSciNet  Google Scholar 

  13. El-Sayed, A.M.A., El-Mesiry, E.M., El-Saka, H.A.A.: Numerical solution for multi-term fractional (arbitrary) orders differential equations. Comput. Appl. Math. 23(1), 33–54 (2004)

    Article  MathSciNet  Google Scholar 

  14. El-Sayed, A., El-Mesiry, A., EL-Saka, H.: On the fractional-order logistic equation. Appl. Math. Lett. 20, 817–823 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  16. Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Computational Eng. in Sys. Appl., vol. 2, p. 963. Lille, France (1996)

  17. Rocco, A., West, B.J.: Fractional calculus and the evolution of fractal phenomena. Physica A 265, 535 (1999)

    Article  Google Scholar 

  18. Smith, J.B.: A technical report of complex system. ArXiv:CS0303020 (2003)

  19. Stanislavsky, A.A.: Memory effects and macroscopic manifestation of randomness. Phys. Rev. E 61, 4752 (2000)

    Google Scholar 

  20. http://socserv2.socsci.mcmaster.ca/cesg2003/shimopaper.pdf

  21. Zhao, J., Jiang, J.: Average conditions for permanence and extinction in non-autonomous Lotka-Volterra system. J. Math. Anal. Appl. 299, 663 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Saka, H.A., Ahmed, E., Shehata, M.I. et al. On stability, persistence, and Hopf bifurcation in fractional order dynamical systems. Nonlinear Dyn 56, 121–126 (2009). https://doi.org/10.1007/s11071-008-9383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9383-x

Keywords

Navigation