Skip to main content
Log in

Global robust point dissipativity of interval neural networks with mixed time-varying delays

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the global robust point dissipativity of an uncertain neural networks model with mixed time-varying delays is investigated, based on Lyapunov theory and inequality techniques. First, the concept of global robust point dissipativity is introduced. Next, some sufficient conditions are given for checking the global robust point dissipativity and the global exponential robust dissipativity of the uncertain neural networks model. Finally, illustrated examples are given to show the effectiveness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takahashi, N.: A new sufficient condition for complete stability of cellular neural networks with delay. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47, 793–799 (2000)

    Article  Google Scholar 

  2. Joy, M.: Results concerning the absolute stability of delayed neural networks. Neural Netw. 13, 613–616 (2000)

    Article  Google Scholar 

  3. Cheng, C., Liao, T., Yan, J., Hwang, C.: Correspondence globally asymptotic stability of a class of neutral-type neural networks with delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 36, 1191–1195 (2006)

    Article  Google Scholar 

  4. Chen, A., Cao, J., Huang, L.: An estimation of upper bound of delays for global asymptotic stability of delayed Hopfield neural networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49, 1028–1032 (2000)

    Article  MathSciNet  Google Scholar 

  5. He, Y., Wu, M., She, J.: Delay-dependent exponential stability of delayed neural networks with time-varying delay. IEEE Trans. Circuits Syst. II Express Briefs 53, 553–557 (2006)

    Article  Google Scholar 

  6. Zeng, Z., Wang, J., Liao, X.: Global exponential stability of a general class of recurrent networks with time-varying delays. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 1353–1358 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cao, J., Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Trans. Neural Netw. 13, 457–463 (2002)

    Article  Google Scholar 

  8. Cao, J., Wang, J.: Absolute exponential stability of recurrent neural networks with Lipschitz-continuous activation functions and time delays. Neural Netw. 17, 379–390 (2004)

    Article  MATH  Google Scholar 

  9. Cao, J.: Global stability conditions for delayed CNNs. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48, 1330–1333 (2001)

    Article  MATH  Google Scholar 

  10. Feng, C., Plamondon, R.: On the stability analysis of delayed neural networks systems. Neural Netw. 14, 1181–1188 (2001)

    Article  Google Scholar 

  11. He, Y., Wanga, Q., Wu, M.: LMI-based stability criteria for neural networks with multiple time-varying delays. Physica D 212, 126–136 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cao, J., Wang, J.: Global asymptotic and robust stability of recurrent neural networks with time delays. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 52, 417–426 (2005)

    Article  MathSciNet  Google Scholar 

  13. Zhang, J.: Global exponential stability of interval neural networks with variable delays. Appl. Math. Lett. 19, 1222–1227 (2006)

    Article  MathSciNet  Google Scholar 

  14. Yang, X., Liao, X., Bai, S., Jevans, D.: Robust exponential stability and domains of attraction in a class of interval neural networks. Chaos Solitons Fractals 26, 445–451 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Singh, V.: On global robust stability of interval Hopfield neural networks with delay. Chaos Solitons Fractals 33, 1183–1188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cao, J., Li, H., Han, L.: Novel results concerning global robust stability of delayed neural networks. Real World Appl. 7, 458–469 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. He, Y., Wang, Q., Zheng, W.: Global robust stability for delayed neural networks with polytopic type uncertainties. Chaos Solitons Fractals 26, 1349–1354 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, M., Wang, L.: Global asymptotic robust stability of static neural network models with S-type distributed delays. Math. Comput. Model. 44, 218–222 (2006)

    Article  MATH  Google Scholar 

  19. Cao, J., Yuan, K., Ho, D.W.C., Lam, J.: Global point dissipativity of neural networks with mixed time-varying delays. Chaos 16, 013105 (2006)

    Article  MathSciNet  Google Scholar 

  20. Masubuchi, I.: Dissipativity inequalities for continuous-time descriptor systems with applications to synthesis of control gains. Syst. Control Lett. 55, 158–164 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Song, Q., Zhao, Z.: Global dissipativity of neural networks with both variable and unbounded delays. Chaos Solitons Fractals 25, 393–401 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Arik, S.: On the global dissipativity of dynamical neural networks with time delays. Phys. Lett. A 326, 126–132 (2004)

    Article  MATH  Google Scholar 

  23. Liao, X., Wang, J.: Global dissipativity of continuous-time recurrent neural networks with time delay. Phys. Rev. E 68, 016118 (2003)

    Article  MathSciNet  Google Scholar 

  24. Guo, L., Wang, H.: Fault detection and diagnosis for general stochastic systems using B-spline expansions and nonlinear filters. IEEE Trans. Circuit Syst.-I 52, 1644–1652 (2005)

    Article  MathSciNet  Google Scholar 

  25. Guo, L., Wang, H.: Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises. IEEE Trans. Automat. Contr. 51 695–700 (2006)

    Article  MathSciNet  Google Scholar 

  26. Gu, K., Kharitonov, V., Chen, J.: Stability of Time-delay Systems. Birkhauser, Boston (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinde Cao.

Additional information

This work was jointly supported by the National Natural Science Foundation of China under Grant No. 60574043, Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20070286003, and the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2006093.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Cao, J. Global robust point dissipativity of interval neural networks with mixed time-varying delays. Nonlinear Dyn 55, 169–178 (2009). https://doi.org/10.1007/s11071-008-9352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-008-9352-4

Keywords

Navigation