Skip to main content
Log in

Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems

Nonlinear Dynamics Aims and scope Submit manuscript

Cite this article


This paper presents analysis of Lyapunov type stability for multiplicative dynamical systems. It has been formally defined and numerical simulations were performed to explore nonlinear dynamics. Chaotic behavior manifested for exemplary multiplicative dynamical systems has been confirmed by calculated Lyapunov exponent values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Rybaczuk, M., Kedzia, A., Zielinski, W.: The concept of physical and fractal dimension, II:  the differential calculus in dimensional spaces. Chaos Solitons Fractals 12, 2537–2552 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Rybaczuk, M., Stoppel, P.: The fractal growth of fatigue defects in materials. Int. J. Fract. 103, 71–94 (2000)

    Article  Google Scholar 

  3. Kasprzak, W., Lysik, B., Rybaczuk, M.: Measurements, Dimensions, Invariants Models and Fractals. Ukrainian Society on Fracture Mechanics Publishing House/SPOLOM, Lviv/Wroclaw (2004)

    Google Scholar 

  4. Volterra, V., Hostinsky, B.: Operations Infinitesimales Lineares. Herman, Paris (1938)

    Google Scholar 

  5. Lyapunov, A.M.: Stability of Motion. Academic Press, New York (1966)

    MATH  Google Scholar 

  6. Aniszewska, D., Rybaczuk, M.: Analysis of the multiplicative Lorenz system. Chaos Solitons Fractals 25, 79–90 (2005)

    Article  MATH  Google Scholar 

  7. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer, New York (1982)

    MATH  Google Scholar 

  8. Aniszewska, D.: Multiplicative Runge–Kutta method. Nonlinear Dyn. 50, 265–272 (2007)

    Article  Google Scholar 

  9. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dorota Aniszewska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aniszewska, D., Rybaczuk, M. Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems. Nonlinear Dyn 54, 345–354 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: