Skip to main content
Log in

Mechanistic mathematical model of kinesin under time and space fluctuating loads

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Kinesin-1 is a processive molecular motor that converts the energy from ATP hydrolysis and Brownian motion into directed movement. Single-molecule techniques have allowed the experimental characterization of single kinesins in vitro at a range of loads and ATP concentrations, and shown that each kinesin molecule moves processively along microtubules by alternately advancing each of its motor domains in a hand-over-hand fashion. Existing models of kinesin movement focus on time and space invariant loads, and hence are not well suited to describing transient dynamics. However, kinesin must undergo transient dynamics when external perturbations (e.g., interactions with other kinesin molecules) cause the load on each motor to change in time. We have developed a mechanistic model that describes, deterministically, the average motion of kinesin under time and space varying loads. The diffusion is modeled using a novel approach inspired by the classical closed form solution for the mean first-passage time. In the new approach, the potential in which the free motor domain diffuses is time varying and updated at each instant during the motion. The mechanistic model is able to predict experimental force-velocity data over a wide range of ATP concentrations (1 μM–10 mM). This mechanistic approach to modeling the mechanical behavior of the motor domains of kinesin allows rational and efficient characterization of the mechanochemical coupling, and provides predictions of kinesin with time-varying loads, which is critical for modeling coordinated transport involving several kinesin molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asbury, C.L., Fehr, A.N., Block, S.M.: Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302, 2130–2134 (2003)

    Article  Google Scholar 

  2. Astumian, R.D.: Thermodynamics and kinetics of a Brownian motor. Science 276, 917–921 (1997)

    Article  Google Scholar 

  3. Astumian, R.D., Derenyi, I.: A chemically reversible Brownian motor: application to kinesin and ncd. Biophys. J. 77, 993–1002 (1999)

    Google Scholar 

  4. Badoual, M., Julicher, F., Prost, J.: Bidirectional cooperative motion of molecular motors. Proc. Natl. Acad. Sci. 99(10), 6696–6701 (2002)

    Article  Google Scholar 

  5. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  6. Bier, M.: Brownian ratchets in physics and biology. Contemp. Phys. 38(6), 371–379 (1997)

    Article  Google Scholar 

  7. Bier, M.: The noisy steps of a motor protein. In: CP655, Unsolved Problems of Noise and Fluctuations: UPoN 2002: Third International Conference, pp. 290–297 (2003)

  8. Bier, M.: Modelling processive motor proteins: moving on two legs in the microscopic realm. Contemp. Phys. 46(1), 41–51 (2005)

    Article  MathSciNet  Google Scholar 

  9. Bier, M.: The stepping motor protein as a feedback control ratchet. Biosystems 88, 301–307 (2007)

    Article  Google Scholar 

  10. Block, S.M., Asbury, C.L., Shaevitz, J.W., Lang, M.J.: Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci. 100(5), 2351–2356 (2003)

    Article  Google Scholar 

  11. Block, S.M., Goldstein, L.S.B., Schnapp, B.J.: Bead movement by single kinesin molecules studied with optical tweezers. Nature 348, 348–352 (1990)

    Article  Google Scholar 

  12. Bloom, G.S., Wagner, M.C., Pfister, K.K., Brady, S.T.: Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochem. J. 27, 3409–3416 (1988)

    Article  Google Scholar 

  13. Brady, S.T.: A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985)

    Article  Google Scholar 

  14. Camalet, S., Duke, T., Julicher, F., Prost, J.: Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl. Acad. Sci. 97(7), 3183–3188 (2000)

    Article  Google Scholar 

  15. Camalet, S., Julicher, F., Prost, J.: Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 82(7), 1590–1593 (1999)

    Article  Google Scholar 

  16. Carter, N.J., Cross, R.A.: Mechanics of the kinesin step. Nature 435, 308–312 (2005)

    Article  Google Scholar 

  17. Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G., Dahan, M.: Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6(7), 1491–1495 (2006)

    Article  Google Scholar 

  18. Cross, R.A.: Directing direction. Nature 406, 839–840 (2000)

    Article  Google Scholar 

  19. Cross, R.A.: The kinetic mechanism of kinesin. Trends Biochem. Sci. 29(6), 301–309 (2004)

    Article  Google Scholar 

  20. de Cuevas, M., Tao, T., Goldstein, L.S.B.: Evidence that the stalk of drosophila kinesin heavy chain is an alpha-helical coiled-coil. J. Cell Biol. 116, 957–965 (1992)

    Article  Google Scholar 

  21. Derenyi, I., Vicsek, T.: The kinesin walk: a dynamic model with elastically coupled heads. Proc. Natl. Acad. Sci. 93, 6775–6779 (1996)

    Article  Google Scholar 

  22. Diehl, M.R., Zhang, K., Lee, H.J., Tirrell, D.A.: Engineering cooperativity in biomotor-protein assemblies. Science 311, 1468–1471 (2006)

    Article  Google Scholar 

  23. Duke, T.: Push or pull? Teams of motor proteins have it both ways. Proc. Natl. Acad. Sci. 99(10), 6521–6523 (2002)

    Article  Google Scholar 

  24. Endow, S.A.: Determinants of molecular motor directionality. Nat. Cell Biol. 1, E163–E167 (1999)

    Article  Google Scholar 

  25. English, B.P., Min, W., van Oijen, A.M., Lee, K.T., Luo, G., Sun, H., Cherayil, B.J., Kou, S.C., Xie, X.S.: Ever-fluctuating single enzyme molecules: Michaelis–Menten equation revisited. Nat. Chem. Biol. 2(2), 87–94 (2006)

    Article  Google Scholar 

  26. Fisher, M.E., Kim, Y.C.: Kinesin crouches to sprint but resists pushing. Proc. Natl. Acad. Sci. 102(45), 16209–16214 (2005)

    Article  Google Scholar 

  27. Fisher, M.E., Kolomeisky, A.B.: Molecular motors and the forces they exert. Physica A 274, 241–266 (1999)

    Article  Google Scholar 

  28. Fisher, M.E., Kolomeisky, A.B.: Simple mechanochemistry describes the dynamics of kinesin molecules. Proc. Natl. Acad. Sci. 98(14), 7748–7753 (2001)

    Article  Google Scholar 

  29. Fox, R.F., Choi, M.H.: Rectified Brownian motion and kinesin motion along microtubules. Phys. Rev. E 63, 051901 (2001)

    Article  Google Scholar 

  30. Gilbert, S.P., Moyer, M.L., Johnson, K.A.: Alternating mechanism of the kinesin ATPase. Biochem. J. 37, 792–799 (1998)

    Article  Google Scholar 

  31. Gilbert, S.P., Webb, M.R., Brune, M., Johnson, K.A.: Pathway of processive ATP hydrolysis by kinesin. Nature 373, 671–676 (1995)

    Article  Google Scholar 

  32. Grosh, K., Zheng, J.F., Zou, Y., de Boer, E., Nuttall, A.L.: High-frequency electromotile responses in the cochlea. J. Acoust. Soc. Am. 115(5), 2178–2184 (2004)

    Article  Google Scholar 

  33. Gross, S.P., Tuma, M.C., Deacon, S.W., Serpinskaya, A.S., Reilein, A.R., Gelfand, V.I.: Interactions and regulation of molecular motors in xenopus melanophores. J. Cell Biol. 156, 855–865 (2002)

    Article  Google Scholar 

  34. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (1983)

    MATH  Google Scholar 

  35. Gunawardena, S., Goldstein, L.S.B.: Cargo-carrying motor vehicles on the neuronal highway: transport pathways and neurodegenerative disease. J. Neurobiol. 58, 258–271 (2004)

    Article  Google Scholar 

  36. Hackney, D.D.: Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains. Nature 377, 448–450 (1995)

    Article  Google Scholar 

  37. Hackney, D.D., Stock, M.F.: Kinesin’s IAK tail domain inhibits initial microtubule-stimulated ADP release. Nat. Cell Biol. 2, 257–260 (2000)

    Article  Google Scholar 

  38. Hancock, W.O., Howard, J.: Kinesin’s processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains. Proc. Natl. Acad. Sci. 96(23), 13147–13152 (1999)

    Article  Google Scholar 

  39. Hess, H.: Towards devices powered by biomolecular motors. Science 312(5775), 860–861 (2006)

    Article  Google Scholar 

  40. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  41. Howard, J., Hudspeth, A.J., Vale, R.D.: Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989)

    Article  Google Scholar 

  42. Huang, T.G., Suhan, J., Hackney, D.D.: Drosophila kinesin motor domain extending to amino acid position 392 is dimeric when expressed in escherichia coli. J. Biol. Chem. 269, 16502–16507 (1994)

    Google Scholar 

  43. Iwasa, K.H.: A two-state piezoelectric model for outer hair cell motility. Biophys. J. 81, 2495–2506 (2001)

    Google Scholar 

  44. Jaud, J., Bathe, F., Schliwa, M., Rief, M., Woehlke, G.: Flexibility of the neck domain enhances kinesin-1 motility under load. Biophys. J. 91, 1407–1412 (2006)

    Article  Google Scholar 

  45. Julicher, F., Prost, J.: Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett. 78(23), 4510–4514 (1997)

    Article  Google Scholar 

  46. Kanada, R., Sasaki, K.: Theoretical model for motility and processivity of two-headed molecular motors. Phys. Rev. E 67, 061917 (2003)

    Article  Google Scholar 

  47. Keller, D., Bustamante, C.: The mechanochemistry of molecular motors. Biophys. J. 78, 541–556 (2000)

    Article  Google Scholar 

  48. Klumpp, S., Mielke, A., Wald, C.: Noise-induced transport of two coupled particles. Phys. Rev. E 63, 031914 (2001)

    Article  Google Scholar 

  49. Kojima, H., Muto, E., Yanagida, T.: Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys. J. 73(4), 2012–2022 (1997)

    Google Scholar 

  50. Kolomeisky, A.B., Stukalin, E.B., Popov, A.A.: Understanding mechanochemical coupling in kinesins using first-passage time. Phys. Rev. E 71, 031902 (2005)

    Article  Google Scholar 

  51. Kosik, K.S., Orecchio, L.D., Schnapp, B.J., Inouye, H., Neve, R.L.: The primary structure and analysis of the squid heavy chain. J. Biol. Chem. 265, 3278–3283 (1990)

    Google Scholar 

  52. Kou, S.C., Cherayil, B.J., Min, W., English, B.P., Xie, X.S.: Single-molecule Michaelis–Menten equations. J. Phys. Chem. B 109, 19068–19081 (2005)

    Article  Google Scholar 

  53. Kull, F.J., Endow, S.A.: Kinesin: switch I and II and the motor mechanism. J. Cell Sci. 115, 15–23 (2002)

    Google Scholar 

  54. Kull, F.J., Endow, S.A.: A new structural state of myosin. Trends Biochem. Sci. 29(3), 103–106 (2004)

    Article  Google Scholar 

  55. Kural, C., Kim, H., Syed, S., Goshima, G., Gelfand, V.I., Selvin, P.R.: Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement. Science 308, 1469–1472 (2005)

    Article  Google Scholar 

  56. Kuznetsov, S.A., Vaisberg, E.A., Shanina, N.A., Magretova, N.N., Chernyak, V.Y., Gelfand, V.I.: The quaternary structure of bovine brain kinesin. EMBO J. 7, 353–356 (1988)

    Google Scholar 

  57. Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., Goldstein, L.S.B., Goodson, H.V., Hirokawa, N., Howard, J., Malmberg, R.L., McIntosh, J.R., Miki, H., Mitchison, T.J., Okada, Y., Reddy, A.S.N., Saxton, W.M., Schliwa, M., Scholey, J.M., Vale, R.D., Walczak, C.E., Wordeman, L.: A standardized kinesin nomenclature. J. Cell Biol. 167(1), 19–22 (2004)

    Article  Google Scholar 

  58. Levi, V., Serpinskaya, A.S., Gratton, E., Gelfand, V.I.: Organelle transport along microtubules in xenopus melanophores: evidence for cooperation between multiple motors. Biophys. J. 90, 318–327 (2006)

    Article  Google Scholar 

  59. Lin, C.-T., Kao, M.-T., Kurabayashi, K., Meyhöfer, E.: Efficient designs for powering microscale devices with nanoscale biomolecular motors. Small 2(2), 281–287 (2006)

    Article  MATH  Google Scholar 

  60. Meyhöfer, E., Howard, J.: The Force generated by a single kinesin molecule against an elastic load. Proc. Natl. Acad. Sci. 92, 574–578 (1995)

    Article  Google Scholar 

  61. Min, W., English, B.P., Luo, G., Cherayil, B.J., Kou, S.C., Xie, X.S.: Fluctuating enzymes: lessons from single-molecule studies. Acc. Chem. Res. 38, 923–931 (2005)

    Article  Google Scholar 

  62. Nan, X., Sims, P.A., Chen, P., Xie, X.S.: Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J. Phys. Chem. B 109, 24220–24224 (2005)

    Article  Google Scholar 

  63. Peskin, C.S., Oster, G.: Coordinated hydrolysis explains the mechanical behavior of kinesin. Biophys. J. 68, 202–211 (1995)

    Google Scholar 

  64. Ray, S., Meyhöfer, E., Milligan, R.A., Howard, J.: Kinesin follows the microtubule’s protofilament axis. J. Cell Biol. 121(5), 1083–1093 (1993)

    Article  Google Scholar 

  65. Rice, S., Lin, A.W., Safer, D., Hart, C.L., Naber, N., Carragher, B.O., Cain, S.M., Pechatnikova, E., Wilson-Kubalek, E.M., Whittaker, M., Pae, E., Cooke, R., Taylor, E.W., Milligan, R.A., Vale, R.D.: A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999)

    Article  Google Scholar 

  66. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Application, 2nd edn. Springer, Berlin (1989)

    Google Scholar 

  67. Sack, S., Kull, F.J., Mandelkow, E.: Motor proteins of the kinesin family—structures, variations, and nucleotide binding sites. Eur. J. Biochem. 262(1), 1–11 (1999)

    Article  Google Scholar 

  68. Schnitzer, M.J., Block, S.M.: Kinesin hydrolyses one ATP per 8-nm step. Lett. Nat. 388, 386–390 (1997)

    Article  Google Scholar 

  69. Scholey, J.M., Heuser, J., Yang, J.T., Goldstein, L.S.B.: Identification of globular mechanochemical heads of kinesin. Nature 338, 355–357 (1989)

    Article  Google Scholar 

  70. Seiler, S., Kirchner, C., Horn, C., Kallipolitou, A., Woehlke, G., Schliwa, M.: Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat. Cell Biol. 2, 333–338 (2000)

    Article  Google Scholar 

  71. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Perseus Publishing, Cambridge (1994)

    Google Scholar 

  72. Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2004)

    Google Scholar 

  73. Svoboda, K., Block, S.M.: Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994)

    Article  Google Scholar 

  74. Svoboda, K., Schmidt, C.F., Schnapp, B.J., Block, S.M.: Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993)

    Article  Google Scholar 

  75. Vale, R.D.: The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003)

    Article  Google Scholar 

  76. Vale, R.D., Funatsu, T., Pierce, D.W., Romberg, L., Harada, Y., Yanagida, T.: Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996)

    Article  Google Scholar 

  77. Vale, R.D., Reese, T.S., Sheetz, M.P.: Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)

    Article  Google Scholar 

  78. van den Heuvel, M.G.L., de Graaff, M.P., Dekker, C.: Molecular sorting by electrical steering of mictrotubules in kinesin-coated channels. Science 312, 910–914 (2006)

    Article  Google Scholar 

  79. Verhey, K.J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B.J., Rapoport, T.A., Margolis, B.: Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J. Cell Biol. 152(5), 959–970 (2001)

    Article  Google Scholar 

  80. Vilfan, A., Duke, T.: Synchronization of active mechanical oscillators by an inertial load. Phys. Rev. Lett. 91(11), 114101 (2003)

    Article  Google Scholar 

  81. Visscher, K., Schnitzer, M.J., Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999)

    Article  Google Scholar 

  82. Yildiz, A., Tomishige, M., Vale, R.D., Selvin, P.R.: Kinesin walks hand-over-hand. Science 303, 676–678 (2004)

    Article  Google Scholar 

  83. Zeldovich, K.B., Joanny, J.F., Prost, J.: Motor proteins transporting cargos. Eur. Phys. J. E 17, 155–163 (2005)

    Article  Google Scholar 

  84. Zheng, J., Madison, L.D., Oliver, D., Fakler, B., Dallos, P.: Prestin, the motor protein of outer hair cells. Audiol. Neuro-Ontol. 7(1), 9–12 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan I. Epureanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hendricks, A.G., Epureanu, B.I. & Meyhöfer, E. Mechanistic mathematical model of kinesin under time and space fluctuating loads. Nonlinear Dyn 53, 303–320 (2008). https://doi.org/10.1007/s11071-007-9315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9315-1

Keywords

Navigation