Skip to main content
Log in

Stability analysis of vehicles on circular motions using multibody dynamics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper reports a method for the stability analysis of the steady curving of vehicles based on equations of motion that are obtained using multibody dynamics. The use of multibody dynamics techniques allows the systematic accurate analysis of vehicle dynamics in complex scenarios. However, stability analyses of vehicles are much more complicated than the use of conventional vehicle dynamics methods. The use of global coordinates and rotational parameters for the bodies involved implies the description of steady motions of the vehicle as periodic orbits rather than equilibrium points in the coordinate space. As a result, stability analyses must rely on Floquet’s theory instead of simple eigenvalue analyses of linearized equations. In practice, applying Floquet’s theory to large multibody systems involves very high computational costs. This paper reports an alternative stability analysis method based on two coordinate projections and a special eigenvalue analysis of differential algebraic equations. With this method, steady circular motions can be described in terms of equilibrium points rather than periodic motions. Stability analyses are thus made much more simple and computationally efficient. By way of example, the method was applied to a simple wheeled mechanism. The numerical results thus obtained were consistent with those of analytical and classical theories, which testifies to the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karkopp, D.: Vehicle Stability. Dekker, New York (2004)

    Google Scholar 

  2. Seydel, R.: Practical Bifurcation and Stability Analysis, 2nd edn. Springer, Berlin (1994)

    MATH  Google Scholar 

  3. Bauchau, O.A., Nikishkov, Y.G.: An implicit transition matrix approach to stability analysis of flexible multibody systems. Multibody Syst. Dyn. 5(3) 279–301 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauchau, O.A., Wand, J.: Stability analysis of complex multibody systems. In: ASME DETC2005, Long Beach, CA, Paper No. 84490 (2005)

  5. Quaranta, G., Mantegazza, P., Masarati, P.: Assessing the local stability of periodic motions for large multibody nonlinear systems using proper orthogonal decomposition. J. Sound Vib. 271, 1015–1038 (2004)

    Article  MathSciNet  Google Scholar 

  6. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Springer, Berlin (2004)

    MATH  Google Scholar 

  7. Wickens, A.H.: Steering and dynamic stability of railway vehicles. Veh. Syst. Dyn. 5, 15–46 (1976)

    Article  Google Scholar 

  8. Newland, D.E.: Steering a flexible railway truck on curved track. J. Eng. Ind. 91, 908–918 (1969)

    Google Scholar 

  9. Boocock, D.: Steady state motion of railway vehicles on curved track. J. Mech. Eng. Sci. 11, 556–566 (1969)

    Article  Google Scholar 

  10. Géradin, M., Cardona, A.: Flexible Multibody Dynamics. A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  11. Shabana, A.A., Zaazaa, K.E., Escalona, J.L., Sany, J.R.: Dynamics of the wheel/rail contact using a new elastic force model. J. Sound Vib. 269(1–2), 295–325 (2003)

    Google Scholar 

  12. Schwab, A.L., Meijaard, J.P.: How to draw Euler angles and utilize Euler parameters. In: Proceedings of the DETC2006, Philadelphia, PA, Paper No. 99307 (2006)

  13. Kalker, J.J.: Survey of wheel–rail rolling contact theory. Veh. Syst. Dyn. 8(4), 317–358 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Escalona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escalona, J.L., Chamorro, R. Stability analysis of vehicles on circular motions using multibody dynamics. Nonlinear Dyn 53, 237–250 (2008). https://doi.org/10.1007/s11071-007-9311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9311-5

Keywords

Navigation