Skip to main content
Log in

Nonlinear vibration of shallow cables with semiactive tuned mass damper

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear vibration of shallow cables, equipped with a semiactive control device is considered in this paper. The control device is represented by a tuned mass damper with a variable out-of-plane inclination. A suitable control algorithm is designed in order to regulate the inclination of the device and to dampen the spatial cable vibrations. Numerical simulations are conducted under free spatial oscillations through a nonlinear finite element model, solved in two different computational environments. A harmonic analysis, in the region of the primary resonance, is also performed through a control-oriented nonlinear Galerkin model, including detuning effects due to the cable slackening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

x, y, z, s:

Reference axes and curvilinear abscissa

t, τ, χ:

Time, normalized time and normalized abscissa

C0, C1:

Cable static and varied configurations

u, v, w:

Cable displacements functions

d, l:

Cable sag and cable span

E, S:

Elastic modulus and cross section

H :

Cable horizontal reaction

μ, c v , c w :

Mass and damping coefficients per unit length

p y , p z :

Distributed in-plane and out-of-plane loads

\(\bar{e}\) :

Constant Lagrangian measure of strain

ω iv , ω iw :

In-plane and out-of-plane natural circular frequencies

p iv , p iw , Ω:

Normalized modal loads and circular frequency

q v i , q w i :

In-plane and out-of-plane modal coordinates

n v , n w :

Number of in-plane and out-of-plane modes retained in the Galerkin models

a0ij , a1i , a2j :

Coefficients of the Galerkin models

a3i , b1j , b2ij , b3k :

Coefficients of the Galerkin models

ξ v i , ξ w i :

Damping coefficients in the Galerkin models

U, ΔU:

Vectors of nodal displacements in FEM models

\(\sigma,\ \tilde{\sigma}\) :

Error and error tolerance in the FEM procedure

n :

Number of unconstrained nodes in the FEM models

m, c, k:

Mass, damping coefficient and stiffness of the TMD

ξ d , ω d :

Damping ratio and circular frequency of the TMD

ι, ω:

Imaginary unit and complex circular frequency

β :

Fundamental complex eigenvalue

ω 0 :

First in-plane circular frequency of a cable without sag

α, ε:

In-plane and out-of-plane TMD inclinations

x0, r:

Position and local axis of the TMD

R :

Length of the TMD

η0, V:

Cable and TMD displacements

ξ, ζ:

Control forces

γ :

Mass ratio of the cable-TMD system

\(\tilde{\alpha}\) :

Scalar parameter of the time integration scheme

gε1, gε2:

Control gains

ψ, ν, λ2:

Nondimensional cable parameters

f v i , f w i :

Cable natural frequencies

v m , w m :

Cable mid-span displacements

v1q , w3q :

Cable observed displacements

α C , β C :

Rayleigh damping matrix parameters

\(\bar{q}_{1}^{w},\ \bar{q}_{2}^{w}\) :

Estimates of the first two out-of-plane modal amplitudes

References

  1. Rega, G.: Nonlinear vibrations of suspended cables, part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  2. Rega, G.: Nonlinear vibrations of suspended cables, part II: deterministic phenomena. Appl. Mech. Rev. 57, 479–514 (2004)

    Article  Google Scholar 

  3. Larsen, J.W., Nielsen, S.R.K.: Non-linear stochastic response of a shallow cable. Int. J. Non-Linear Mech. 41, 327–344 (2004)

    Article  Google Scholar 

  4. Perkins, N.C.: Modal interactions in the non-linear response of elastic cables under parametric/external excitation. Int. J. Non-Linear Mech. 27, 233–250 (1992)

    Article  MATH  Google Scholar 

  5. Nayfeh, A.H., Arafat, H.N., Chin, C.M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8, 337–387 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Benedettini, F., Rega, G., Alaggio, R.: Nonlinear oscillations of a four-degree of freedom model of a suspended cable under multiple internal resonance conditions. J. Sound Vib. 182, 775–798 (1995)

    Article  Google Scholar 

  7. Luongo, A., Rega, G., Vestroni, F.: Parametric analysis of large amplitude free vibrations of a suspended cable. Int. J. Solids Struct. 20, 95–105 (1984)

    Article  Google Scholar 

  8. Irvine, H.M., Caughey, T.K.: The linear theory of free vibrations of suspended cables. Proc. R. Soc. Lond. 341, 299–315 (1974)

    Article  Google Scholar 

  9. Arafat, H.N., Nayfeh, A.H.: Nonlinear responses of suspended cables to primary resonance excitations. J. Sound Vib. 266, 325–354 (2003)

    Article  Google Scholar 

  10. Desai, Y.M., Popplewell, N., Shah, A.H., Buragohain, D.N.: Geometric nonlinear analysis of cable supported structures. Comput. Struct. 29(6), 1001–1006 (1988)

    Article  MATH  Google Scholar 

  11. Desai, Y.M., Popplewell, N., Shah, A.H.: Finite element modeling of transmission line galloping. Comput. Struct. 57, 407–420 (1995)

    Article  MATH  Google Scholar 

  12. Gattulli, V., Martinelli, L., Perotti, F., Vestroni, F.: Nonlinear oscillations of cables under harmonic loading using analytical and finite element models. Comput. Methods Appl. Mech. Eng. 193, 69–85 (2004)

    Article  MATH  Google Scholar 

  13. Cluni, F.: Studio del comportamento dinamico dei cavi strutturali: modelli numerici e prove sperimentali. Dissertation, University of Perugia (2004) (in Italian)

  14. Cluni, F., Gusella, V., Ubertini, F.: A parametric investigation of wind-induced cable fatigue. Eng. Struct. (2007). doi: 10.1016/j.engstruct.2007.02.010

  15. Canbolat, H., Dawson, D., Rahn, C.D., Nagarkatti, S.: Adaptive boundary control of out-of-plane cable vibration. ASME J. Appl. Mech. 65, 963–969 (1998)

    Article  MathSciNet  Google Scholar 

  16. Susumpow, T., Fujino, Y.: Active control of multimodal cable vibrations by axial support motion. Earthq. Eng. Struct. Dyn. 5, 283–292 (1995)

    Google Scholar 

  17. Gattulli, V., Pasca, M., Vestroni, F.: Nonlinear oscillations of a nonresonant cable under in-plane excitation with a longitudinal control. Nonlinear Dyn. 14(2), 139–156 (1997)

    Article  MATH  Google Scholar 

  18. Alaggio, R., Gattulli, V., Potenza, F.: Experimental validation of longitudinal active control strategy for cable oscillations. In: Proceedings of the 9th Italian Conference on Wind Engineering (INVENTO), Pescara (2006)

  19. Gattuli, V., Vestroni, F.: Nonlinear strategies for longitudinal control in the stabilization of an oscillating suspended cable. Dyn. Control 10(4), 359–374 (2000)

    Article  Google Scholar 

  20. Xu, Y.L., Yu, Z.: Non-linear vibration of cable-damper system, part I: formulation. J. Sound Vib. 225, 447–463 (1999)

    Article  Google Scholar 

  21. Xu, Y.L., Yu, Z.: Non-linear vibration of cable-damper system, part II: application and verification. J. Sound Vib. 225, 465–481 (1999)

    Article  Google Scholar 

  22. Zhou, Q., Nielsen, S.R.K., Qu, W.L.: Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers. J. Sound Vib. 296, 1–22 (2006)

    Article  Google Scholar 

  23. Claren, R., Diana, G.: Vibrazioni dei conduttori. Energ. Elettr. 11, 677–688 (1966) (in Italian)

    Google Scholar 

  24. Gattulli, V., Lepidi, M., Luongo, A.: Controllo con una massa accordata dell’instabilità aeroelastica di un cavo sospeso. In: Proceedings of the 16th Italian Conference on Theoretic and Applied Mechanics (AIMETA) (2003) (in Italian)

  25. Pacheko, B.M., Fujino, Y., Sulekh, A.: Estimation curve for modal damping in stay cables with viscous dampers. ASCE J. Struct. Eng. 119(6), 1961–1979 (1990)

    Article  Google Scholar 

  26. Wu, W.J., Cai, C.S.: Experimental study of magnetorheological dampers and application to cable vibration control. J. Vib. Control 12(1), 67–82 (2006)

    Article  Google Scholar 

  27. Abdel-Rohman, M., Spencer, B.F.: Control of wind-induced nonlinear oscillations in suspended cables. Nonlinear Dyn. 37, 341–355 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Markiewikz, M.: Optimum dynamic characteristics of stockbridge dampers for dead-end spans. J. Sound Vib. 188, 243–256 (1995)

    Article  Google Scholar 

  29. Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration reduction with a hung-on TMD system, part I: theoretical study. J. Vib. Control 12(7), 801–814 (2006)

    Article  MATH  Google Scholar 

  30. Cai, C.S., Wu, W.J., Shi, X.M.: Cable vibration reduction with a hung-on TMD system, part II: parametric study. J. Vib. Control 12(8), 881–899 (2006)

    Article  MATH  Google Scholar 

  31. Wu, W.J., Cai, C.S.: Cable vibration control with a magnetorheological fluid based tuned mass damper. In: Proceedings of the 10th Biennial ASCE Aerospace Division International Conference on Engineering, Construction, and Operations in Challenging Environments, League City/Houston, TX, USA, 5–8 March 2006

  32. Casciati, F., Magonette, G., Marazzi, F.: Technology of Semiactive Devices and Applications in Vibration Mitigation. Wiley, Chichester (2006)

    Google Scholar 

  33. Casciati, F., Ubertini, F.: Control of cables nonlinear vibrations under turbulent wind action. In: Deodatis G., Spanos P. (eds.) Computational stochastic mechanics, 5th International Conference on Computational Stochastic Mechanics, Rodos, June 2006, pp. 169–178. Millpress, Rotterdam (2007)

    Google Scholar 

  34. ANSYS Inc.: ANSYS and CivilFEM 9.0 User Manual. Madrid (2005)

  35. The Mathworks Inc.: Matlab and Simulink. Natick (2002)

  36. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  37. Doedel, E.J., Paffenroth, R.C., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Oldeman, B.E., Sandstede, B., Wang, X.: AUTO2000: continuation and bifurcation software for ordinary differential equations. Available online from http://indy.cs.concordia.ca/auto/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Ubertini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casciati, F., Ubertini, F. Nonlinear vibration of shallow cables with semiactive tuned mass damper. Nonlinear Dyn 53, 89–106 (2008). https://doi.org/10.1007/s11071-007-9298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9298-y

Keywords

Navigation