Skip to main content
Log in

Parametric identification of a chaotic base-excited double pendulum experiment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The parametric identification of a chaotic system was investigated for a double pendulum. From recorded experimental response data, the unstable periodic orbits (UPOs) were extracted and then used in a harmonic balance identification process. By applying digital filtering, digital differentiation and linear regression techniques for optimization, the results were improved. Verification of the related simulation system and linearized system also corroborated the success of the identification algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A.H.: Parametric identification of nonlinear dynamic systems. Comput. Struct. 20(1–3), 487–493 (1985)

    Article  MATH  Google Scholar 

  2. Hajj, M.R., Fung, J., Nayfeh, A.H., Fahey, S.O.: Damping identification using perturbation techniques and higher order spectra. Nonlinear Dyn. 23(2), 189–203 (1986)

    Article  Google Scholar 

  3. Chen, Q., Tomlinson, G.R.: Parametric identification of systems with dry friction and nonlinear stiffness a time series model. J. Vib. Acoust. 118(2), 252–263 (1996)

    Google Scholar 

  4. Kapania, R.K., Park, S.: Parametric identification of nonlinear structure dynamic systems using finite element method. AIAA J. 35(4), 719–726 (1997)

    Article  MATH  Google Scholar 

  5. Chatterjee, A., Vyas, N.S.: Nonlinear parameter estimation in rotor-bearing system using Volterra series and method of harmonic probing. ASME J. Vib. Acoust. Trans. 125(3), 299–306 (2003)

    Article  Google Scholar 

  6. Gottlieb, O., Feldman, M.: Application of a Hilbert-transform based algorithm for parameter estimation of a nonlinear ocean system roll model. J. Offshore Mech. Arct. Eng. 119, 239–243 (1997)

    Google Scholar 

  7. Feldman, M.: Nonlinear free vibration identification via the Hilbert transform. J. Sound Vib. 208(3), 475–489 (1997)

    Article  Google Scholar 

  8. Parlitz, U., et al.: Identification of pre-sliding friction dynamics. Chaos 14(2), 420–430 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Epureanu, B.I., Dowell, E.H.: System identification for the Ott–Grebogi–Yorke controller design. Phys. Rev. E 56(5), 5327–5331 (1997)

    Article  Google Scholar 

  10. Tufillaro, N.B., Abbott, T., Reilly, J.: An Experimental Approach to Nonlinear Dynamics and Chaos. Addison–Wesley, Redwood City (1992)

    MATH  Google Scholar 

  11. Auerbach, D., Cvitanovic, P., Eckmann, J.P., Gunaratne, G., Procaccia, I.: Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58, 2387–2389 (1987)

    Article  MathSciNet  Google Scholar 

  12. Lathrop, D.P., Kostelich, E.J.: Characterization of an experimental strange attractor by periodic orbits. Phys. Rev. A 40, 4028–4031 (1989)

    Article  MathSciNet  Google Scholar 

  13. Abarbanel, H.D.I., Brown, R., Sidorowich, J.J., Tsimring, L.S.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65, 1331–1392 (1993)

    Article  MathSciNet  Google Scholar 

  14. Yasuda, K., Kawamura, S., Watanabe, K.: Identification of nonlinear multi-degree-of-freedom systems (presentation of an identification technique). JSME Int. J. Ser. III 31, 8–14 (1998)

    MathSciNet  Google Scholar 

  15. Yasuda, K., Kawamura, S., Watanabe, K.: Identification of nonlinear multi-degree-of-freedom systems (identification under noisy measurements). JSME Int. J. Ser. III 31, 302–309 (1998)

    MathSciNet  Google Scholar 

  16. Plakhtienko, N.P.: Methods of identification of nonlinear mechanical vibrating systems. Int. Appl. Mech. 36(12), 1565–1594 (2000)

    Article  Google Scholar 

  17. Plakhtienko, N.P.: A method of special weight-functions in the problem of parametric identification of mechanical systems. Dokl. Akad. Nauk A 8, 31–35 (1983)

    Google Scholar 

  18. Ghanem, R., Romeo, F.: A wavelet-based approach for modal and parameter identification of nonlinear systems. Int. J. Non-Linear Mech. 36(5), 835–859 (2001)

    Article  MATH  Google Scholar 

  19. Yuan, C.M., Feeny, B.F.: Parametric identification of chaotic systems. J. Vib. Control 4(4), 405–426 (1998)

    Article  Google Scholar 

  20. Feeny, B.F., Yuan, C.M., Cusumano, J.P.: Parametric identification of an experimental magneto-elastic oscillator. J. Sound Vib. 247(5), 785–806 (2001)

    Article  Google Scholar 

  21. Liang, Y., Feeny, B.F.: Parametric identification of chaotic systems, Part I: parametric identification of a simulated horizontally excited pendulum. In: ASME International Mechanical Engineering Congress and RD&D Expo. No. 59836 on CD-ROM (2004)

  22. Al-Zamel, Z., Feeny, B.F.: Improved estimations of unstable periodic orbits extracted from chaotic sets. In: 2001 ASME Design Engineering Technical Conferences, Proceedings of DET’01 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Feeny, B.F. Parametric identification of a chaotic base-excited double pendulum experiment. Nonlinear Dyn 52, 181–197 (2008). https://doi.org/10.1007/s11071-007-9270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9270-x

Keywords

Navigation