Skip to main content
Log in

Representation of discrete sequences with N-dimensional iterated function systems in tensor form

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Iterated Function System (IFS) models have been used to represent discrete sequences where the attractor of the IFS is self-affine or piecewise self-affine in R 2 or R 3 (R is the set of real numbers). In this paper, the piecewise hidden-variable fractal model is extended from R 3 to R n (n is an integer greater than 3), which is called the multi-dimensional piecewise hidden variable fractal model. This new model uses a “mapping partial derivative” and a constrained inverse algorithm to identify the model parameters. The model values depend continuously on all the hidden variables. Therefore the result is very general. Moreover, the piecewise hidden-variable fractal model in tensor form is more terse than in the usual matrix form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maragos, P.: Fractal aspects of speech signals: Dimension and interpolation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, May 14–17, pp. 417–420 (1991)

  2. Zhu, X., Cheng, B., Titterington, D.M.: Fractal model of a one-dimension discrete signal and its implementation. In: IEE Proceedings: Vision, Image and Signal Processing, vol. 141, pp. 318–324 (1994)

  3. Wittenbrink, C.M.: IFS Fractal interpolation for 2D and 3D visualization. In: Proceedings of the IEEE Visualization Conference, Atlanta, October 29–31, pp. 77–84 (1995)

  4. Zhao, N.: Construction and application fractal interpolation surfaces. Vis. Comput. 12, 132–146 (1996)

    Google Scholar 

  5. Price, J.R., Hayes, M.H.: Fractal interpolation of images and volumes. In: Conference Record of the Asilomar Conference on Signals, Systems & Computers, Pacific Grove, November 1–4, pp. 228–230 (1998)

  6. Ida, T., Sambonsugi, Y.: Self-affine mapping system for object contour extraction. In: IEEE International Conference on Image Processing, Japan, October 24–28, pp. 250–254 (1999)

  7. Ida, T., Sambonsugi, Y.: Self-affine mapping system and its application to object contour extraction. IEEE Trans. Image Process. 9, 1926–1936 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Nettleton, D.J.: Representation and generation of graphs using iterated function systems. Appl. Math. Lett. 10, 75–77 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chu, H.-T., Chen, C.-C.: On bounding boxes of iterated function system attractors. Comput. Graph. 27, 407–414 (2003)

    Article  Google Scholar 

  10. Honda, H., Haseyama, M., Kitajima, H.: Fractal interpolation for natural images. In: IEEE International Conference on Image Processing, Japan, October 24–28, pp. 657–661 (1999)

  11. Mazel, D.S., Manson, H.H.: Using iterated function system to model discrete sequences. IEEE Trans. Signal Process. 40, 1724–1734 (1992)

    Article  MATH  Google Scholar 

  12. Mazel, D.S.: Representation of discrete sequences with three-dimensional iterated function systems. IEEE Trans. Signal Process. 42, 3269–3271 (1994)

    Article  Google Scholar 

  13. Mazel, D.S., Manson, H.H.: Hidden-variable fractal interpolation of discrete sequence. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, May 14–17, pp. 3393–3396 (1991)

  14. Peruggia, M.: Discrete Iterated Function Systems. Wellesley, Massachusetts (1993)

    MATH  Google Scholar 

  15. Craciunescu, O.I., Das, S.K., Poulson, J.M., Samulski, T.V.: Three-dimensional tumor perfusion reconstruction using fractal interpolation functions. IEEE Trans. Biomed. Eng. 48, 462–473 (2001)

    Article  Google Scholar 

  16. Craciunescu, O.I., Das, S.K., Wong, T.Z., Samulski, T.V.: Fractal reconstruction of breast perfusion before and after hyperthermia treatments. Bioeng. Div. (ASME) 54, 207–211 (2002)

    Google Scholar 

  17. Craciunescu, O.I., Das, S.K., Samulski, T.V.: Piecewise fractal interpolation models to reconstruct the three-dimensional tumor perfusion. In: Proceedings of the 2000 World Congress on Medical Physics and Biomedical Engineering and of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology, Chicago, July 23–28, pp. 292–305 (2000)

  18. Barnsle, M.F.: Hidden variable fractal interpolation functions. Soc. Ind. Appl. Math. J., Math. Ann. 20, 1218–1242 (1989)

    Google Scholar 

  19. Thuraisingham, R.A.: On multiscale entropy analysis for physiological data. Phys. A: Stat. Mech. Appl. 366(7), 323–332 (2006)

    Article  Google Scholar 

  20. Li, X., Kapiris, P.G., Polygiannakis, J., Eftaxias, K.A., Yao, X.: Fractal spectral analysis of pre-epileptic seizures phase: in terms of criticality. J. Neural Eng. 2(2), 11–16 (2005)

    Article  Google Scholar 

  21. Kapiris, P.G., Polygiannakis, J., Li, X., Yao, X., Eftaxias, K.A.: Similarities in precursory features in seismic shocks and epileptic seizures. Europhys. Lett. 69(4), 657–663 (2005)

    Article  Google Scholar 

  22. Barnsley, M.F.: Fractals Everywhere. Academic, Boston (1993)

    MATH  Google Scholar 

  23. Strahle, W.C.: Turbulent combustion data analysis using fractals. Aircr. Ind. Assoc. Am. J. 29, 409–417 (1991)

    Google Scholar 

  24. Marvasti, M.A., Strahle, W.C.: Fractal geometry analysis of turbulent data. Signal Process. 41, 191–201 (1995)

    Article  MATH  Google Scholar 

  25. Barnsley, M.F., Elton, J.H., Hardin, D.P.: Recurrent iterated function systems. Constr. Approx. 5, 3–31 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  26. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, T., Liu, J., Zhuang, Z.: Multi-dimensional self-affine fractal interpolation model in tensor form. Nonlinear Dyn. (2007, in press) doi: 10.1007/s11071-007-9259-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Liu, J.L. & Zhuang, Z. Representation of discrete sequences with N-dimensional iterated function systems in tensor form. Nonlinear Dyn 52, 89–93 (2008). https://doi.org/10.1007/s11071-007-9260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9260-z

Keywords

Navigation