Skip to main content

Advertisement

SpringerLink
Singular perturbation methods for slow–fast dynamics
Download PDF
Download PDF
  • Original Paper
  • Open Access
  • Published: 21 February 2007

Singular perturbation methods for slow–fast dynamics

  • Ferdinand Verhulst1 

Nonlinear Dynamics volume 50, pages 747–753 (2007)Cite this article

  • 1776 Accesses

  • 53 Citations

  • Metrics details

Abstract

Recently, geometric singular perturbation theory has been extended considerably while at the same time producing many new applications. We will review a number of aspects relevant to non-linear dynamics to apply this to periodic solutions within slow manifolds and to review a number of non-hyperbolic cases. The results are illustrated by examples.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Anosov, D.V.: On limit cycles in systems of differential equations with a small parameter in the highest derivatives. AMS Transl. Ser. 2(33), 233–276 (1963)

    Google Scholar 

  2. Cartmell, M.: Introduction to Linear, Parametric and Nonlinear Vibrations. Chapman & Hall, London (1990)

    MATH  Google Scholar 

  3. Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Ind. Univ. Math. J. 21, 193–225 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fenichel, N.: Asymptotic stability with rate conditions. Ind. Univ. Math. J. 23, 1109–1137 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fenichel, N.: Asymptotic stability with rate conditions, II. Ind. Univ. Math. J. 26, 81–93 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fenichel, N.: Geometric singular perturbations theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Flatto, L., Levinson, N.: Periodic solutions of singularly perturbed systems. J. Ration. Mech. Anal. 4, 943–950 (1955)

    MathSciNet  Google Scholar 

  8. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications, p. 222, Springer-Verlag, New York (1987)

    MATH  Google Scholar 

  9. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems, Montecatini Terme, Lecture Notes in Mathematics, Johnson, R. (ed.), Springer-Verlag, Berlin, vol. 1609, pp. 44–118 (1994)

    Google Scholar 

  10. Kaper, T.J.: An introduction to geometric methods and dynamical systems theory for singular perturbation problems. In: Analyzing Multiscale Phenomena Using Singular Perturbation Methods, Proceedings of the Symposium on Applied Mathematics, Cronin, J., O'Malley Jr., R. E. (eds.), American Mathematical Society, Providence, RI, vol. 56, pp. 85–131 (1999)

    Google Scholar 

  11. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174, 312–368 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. O'Malley, R.E. Jr.: Introduction to Singular Perturbations. Academic, New York (1974)

    MATH  Google Scholar 

  13. Schmidt G., Tondl, A.: Non-linear Vibrations, p. 420, Akademie-Verlag, Berlin (1986)

    Google Scholar 

  14. Szmolyan, P., Wechselberger, M.: Relaxation oscillations in ℝ3. J. Differ. Equ. 200, 69–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tikhonov, A.N.: Systems of differential equations containing a small parameter multiplying the derivative. Mat. Sb. 31, 575–586 (1952)

    Google Scholar 

  16. Tondl, A., Ruijgrok, T., Verhulst, F., Nabergoj, R.: Autoparametric Resonance in Mechanical Systems, p. 196, Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  17. Vasil'eva, A.B.: Asymptotic behaviour of solutions to certain problems involving nonlinear differential equations containing a small parameter multiplying the highest derivatives. Russ. Math. Surv. 18, 13–84 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  18. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems, p. 304, Springer-Verlag, New York (2000)

    Google Scholar 

  19. Verhulst, F., Abadi: Autoparametric resonance of relaxation oscilations. ZAMM 85, 122–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Verhulst, F.: Methods and Applications of Singular Perturbations, Boundary Layers and Multiple Timescale Dynamics, p. 340, Springer-Verlag, Berlin (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mathematisch Instituut, University of Utrecht, PO Box 80.010, 3508, TA Utrecht, The Netherlands

    Ferdinand Verhulst

Authors
  1. Ferdinand Verhulst
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ferdinand Verhulst.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Verhulst, F. Singular perturbation methods for slow–fast dynamics. Nonlinear Dyn 50, 747–753 (2007). https://doi.org/10.1007/s11071-007-9236-z

Download citation

  • Received: 02 February 2006

  • Accepted: 04 April 2006

  • Published: 21 February 2007

  • Issue Date: December 2007

  • DOI: https://doi.org/10.1007/s11071-007-9236-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Singular perturbations
  • Slow manifolds
  • Periodic solutions
  • Nonhyperbolic
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.